The use of sensors and actuators as a form of controlling cyber-physical systems in resource networks has been integrated and referred to as the Internet of Things (IoT). However, the connectivity of many stand-alone IoT systems through the Internet introduces numerous cybersecurity challenges as sensitive information is prone to be exposed to malicious users. This paper focuses on the improvement of IoT cybersecurity from an ontological analysis, proposing appropriate security services adapted to the threats. The authors propose an ontology-based cybersecurity framework using knowledge reasoning for IoT, composed of two approaches: (1) design time, which provides a dynamic method to build security services through the application of a model-driven methodology considering the existing enterprise processes; and (2) run time, which involves monitoring the IoT environment, classifying threats and vulnerabilities, and actuating in the environment ensuring the correct adaptation of the existing services. Two validation approaches demonstrate the feasibility of our concept. This entails an ontology assessment and a case study with an industrial implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163186 | PMC |
http://dx.doi.org/10.3390/s18093053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!