A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and Irreversible Thermochromic Sensor Applications of Manganese Violet. | LitMetric

Synthesis and Irreversible Thermochromic Sensor Applications of Manganese Violet.

Materials (Basel)

Department of Civil Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea.

Published: September 2018

An irreversible thermochromic material based on manganese violet (MnNH₄P₂O₇) is synthesized. The crystal phase, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy. The absorption spectra of the synthesized material are obtained using a UV-Vis spectrometer, and the thermochromism exhibited by the powdered samples at high temperatures is also investigated. The as-synthesized manganese violet pigment consists of pure α-MnNH₄P₂O₇ phase. In addition, the synthesized pigment largely consists of hexagonal crystals with a diameter of hundreds of nanometers. On heating, the pigment simultaneously loses H₂O and NH₃ in two successive steps at approximately 330⁻434.4 °C and 434.4⁻527 °C, which correspond to the formation of an intermediate phase and of Mn₂P₄O, respectively. An overall mass loss of 14.22% is observed, which is consistent with the expected 13.79%. An irreversible color change from violet to white is observed after exposure of the synthesized manganese violet pigment at 400 °C for 30 min. This is attributed to the oxidation of ammonia to hydroxylamine, which then decomposes to nitrogen and water, or alternatively to the direct oxidation of ammonia to nitrogen. Furthermore, we demonstrate the potential application of synthesized manganese violet in the production of irreversible thermochromic paint by mixing with potassium silicate solution as a binder and deionized water as a solvent at a specific ratio. The thermochromic paint is then applied in fabrication of irreversible thermochromic sensors by coating it onto a steel plate surface. Finally, we show that manganese violet-based irreversible thermochromic sensors are able to detect temperatures around 400 °C by changing color from violet to white/milky.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165037PMC
http://dx.doi.org/10.3390/ma11091693DOI Listing

Publication Analysis

Top Keywords

irreversible thermochromic
20
manganese violet
20
synthesized material
8
violet pigment
8
pigment consists
8
synthesized manganese
8
400 °c
8
oxidation ammonia
8
thermochromic paint
8
thermochromic sensors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!