trying... 3021305120190102202112041422-00671992018Sep12International journal of molecular sciencesInt J Mol SciThe Significance of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in Human Gliomas.272410.3390/ijms19092724Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by N-ethyl-N-nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target.SchifferDavideDProfessor Emeritus of Neurology, University of Turin, Corso Bramante 88/90, 10126 Turin, Italy. davide.schiffer@unito.it.MellaiMartaMDepartment of Health Sciences, School of Medicine, University of Eastern Piedmont, 28100 Novara, Italy. martamel73@gmail.com.BoldoriniRenzoRDepartment of Health Sciences, School of Medicine, University of Eastern Piedmont, 28100 Novara, Italy. renzo.boldorini@med.uniupo.it.BisognoIlariaIFormer Research Centre/Policlinico di Monza Foundation, Via P. Micca 29, 13100 Vercelli, Italy. ilaria.bisogno01@universitadipavia.it.GrifoniSilviaSIstituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10126 Turin, Italy. silvia.grifoni@izsto.it.CoronaCristianoCIstituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10126 Turin, Italy. cristiano.corona@izsto.it.BerteroLucaL0000-0001-9887-7668Department of Medical Sciences, University of Turin/Città della Salute e della Scienza, Via Santena 7, 10126 Turin, Italy. luca.bertero@unito.it.CassoniPaolaPDepartment of Medical Sciences, University of Turin/Città della Salute e della Scienza, Via Santena 7, 10126 Turin, Italy. paola.cassoni@unito.it.CasaloneCristinaCIstituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10126 Turin, Italy. cristina.casalone@izsto.it.AnnovazziLauraLFormer Research Centre/Policlinico di Monza Foundation, Via P. Micca 29, 13100 Vercelli, Italy. lannov16@gmail.com.eng2016.AAI2705.U3302Compagnia di San Paolo-Fondazione Cassa di Risparmio di VercelliJournal ArticleReview20180912SwitzerlandInt J Mol Sci1010927911422-00670CSPG4 protein, human0Chondroitin Sulfate Proteoglycans0Homeobox Protein Nkx-2.20Homeodomain Proteins0Membrane Proteins0NKX2-2 protein, human0Nkx2-2 protein, rat0Nuclear Proteins0Transcription FactorsIMAdultAnimalsCentral Nervous SystemmetabolismpathologyChondroitin Sulfate ProteoglycansmetabolismGlioblastomametabolismpathologyGliomametabolismpathologyHomeobox Protein Nkx-2.2Homeodomain ProteinsHumansMembrane ProteinsmetabolismNuclear ProteinsRatsTranscription FactorsCNSNG2/CSPG4developmentgliomagenesisvesselsThe authors declare no conflict of interest.20187242018827201882820189156020189156020191360201891epublish30213051PMC616457510.3390/ijms19092724ijms19092724Raff M.C., Miller R.H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983;303:390–396. doi: 10.1038/303390a0.10.1038/303390a06304520Richardson W.D., Young K.M., Tripathi R.B., McKenzie I. NG2-glia as Multipotent Neural Stem Cells: Fact or Fantasy? Neuron. 2011;70:661–673. doi: 10.1016/j.neuron.2011.05.013.10.1016/j.neuron.2011.05.013PMC311994821609823Dawson M.R., Polito A., Levine J.M., Reynolds R. NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci. 2003;24:476–488. doi: 10.1016/S1044-7431(03)00210-0.10.1016/S1044-7431(03)00210-014572468Nishiyama A., Watanabe M., Yang Z., Bu J. Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells. J. Neurocytol. 2002;31:437–455. doi: 10.1023/A:1025783412651.10.1023/A:102578341265114501215Chang A., Nishiyama A., Peterson J., Prineas J., Trapp B.D. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 2000;20:6404–6412. doi: 10.1523/JNEUROSCI.20-17-06404.2000.10.1523/JNEUROSCI.20-17-06404.2000PMC677299210964946Etxeberria A., Mangin J.M., Aguirre A., Gallo V. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat. Neurosci. 2010;13:287–289. doi: 10.1038/nn.2500.10.1038/nn.2500PMC468143520173746De Biase L.M., Nishiyama A., Bergles D.E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 2010;30:3600–3611. doi: 10.1523/JNEUROSCI.6000-09.2010.10.1523/JNEUROSCI.6000-09.2010PMC283819320219994Dimou L., Gallo V. NG2-glia and their functions in the central nervous system. Glia. 2015;63:1429–1451. doi: 10.1002/glia.22859.10.1002/glia.22859PMC447076826010717Dimou L., Simon C., Kirchhoff F., Takebayashi H., Gotz M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci. 2008;28:10434–10442. doi: 10.1523/JNEUROSCI.2831-08.2008.10.1523/JNEUROSCI.2831-08.2008PMC667103818842903Kang S.H., Fukaya M., Yang J.K., Rothstein J.D., Bergles D.E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron. 2010;68:668–681. doi: 10.1016/j.neuron.2010.09.009.10.1016/j.neuron.2010.09.009PMC298982721092857Simon C., Gotz M., Dimou L. Progenitors in the adult cerebral cortex: Cell cycle properties and regulation by physiological stimuli and injury. Glia. 2011;59:869–881. doi: 10.1002/glia.21156.10.1002/glia.2115621446038Clarke L.E., Young K.M., Hamilton N.B., Li H., Richardson W.D., Attwell D. Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J. Neurosci. 2012;32:8173–8185. doi: 10.1523/JNEUROSCI.0928-12.2012.10.1523/JNEUROSCI.0928-12.2012PMC337803322699898Simon C., Lickert H., Gotz M., Dimou L. Sox10-iCreERT2: A mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis. 2012;50:506–515. doi: 10.1002/dvg.22003.10.1002/dvg.2200322173870Young K.M., Psachoulia K., Tripathi R.B., Dunn S.J., Cossell L., Attwell D., Tohyama K., Richardson W.D. Oligodendrocyte dynamics in the healthy adult CNS: Evidence for myelin remodeling. Neuron. 2013;77:873–885. doi: 10.1016/j.neuron.2013.01.006.10.1016/j.neuron.2013.01.006PMC384259723473318Tan A.M., Zhang W., Levine J.M. NG2: A component of the glial scar that inhibits axon growth. J. Anat. 2005;207:717–725. doi: 10.1111/j.1469-7580.2005.00452.x.10.1111/j.1469-7580.2005.00452.xPMC157158316367799Zhu X., Bergles D.E., Nishiyama A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development. 2008;135:145–157. doi: 10.1242/dev.004895.10.1242/dev.00489518045844Behar T., McMorris F.A., Novotny E.A., Barker J.L., Dubois-Dalcq M. Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres. J. Neurosci. Res. 1988;21:168–180. doi: 10.1002/jnr.490210209.10.1002/jnr.4902102093216419Power J., Mayer-Proschel M., Smith J., Noble M. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev. Biol. 2002;245:362–375. doi: 10.1006/dbio.2002.0610.10.1006/dbio.2002.061011977987Levison S.W., Goldman J.E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron. 1993;10:201–212. doi: 10.1016/0896-6273(93)90311-E.10.1016/0896-6273(93)90311-E8439409Menn B., Garcia-Verdugo J.M., Yaschine C., Gonzalez-Perez O., Rowitch D., Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 2006;26:7907–7918. doi: 10.1523/JNEUROSCI.1299-06.2006.10.1523/JNEUROSCI.1299-06.2006PMC667420716870736Hughes E.G., Kang S.H., Fukaya M., Bergles D.E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 2013;16:668–676. doi: 10.1038/nn.3390.10.1038/nn.3390PMC380773823624515Grako K.A., Ochiya T., Barritt D., Nishiyama A., Stallcup W.B. PDGF (alpha)-receptor is unresponsive to PDGF–AA in aortic smooth muscle cells from the NG2 knockout mouse. J. Cell Sci. 1999;112:905–915.10036240Leoni G., Rattray M., Fulton D., Rivera A., Butt A.M. Immunoablation of cells expressing the NG2 chondroitin sulphate proteoglycan. J. Anat. 2014;224:216–227. doi: 10.1111/joa.12141.10.1111/joa.12141PMC396906424252088Ozerdem U., Stallcup W.B. Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis. 2004;7:269–276. doi: 10.1007/s10456-004-4182-6.10.1007/s10456-004-4182-6PMC135081815609081Rivera Z., Ferrone S., Wang X., Jube S., Yang H., Pass H.I., Kanodia S., Gaudino G., Carbone M. CSPG4 as a target of antibody-based immunotherapy for malignant mesothelioma. Clin. Cancer Res. 2012;18:5352–5463. doi: 10.1158/1078-0432.CCR-12-0628.10.1158/1078-0432.CCR-12-0628PMC346374222893632Wang S., Svendsen A., Kmiecik J., Immervoll H., Skaftnesmo K.O., Planagumà J., Reed R.K., Bjerkvig R., Miletic H., Enger P.Ø., et al. Targeting the NG2/CSPG4 proteoglycan retards tumour growth and angiogenesis in preclinical models of GBM and melanoma. PLoS ONE. 2011;6:e23062. doi: 10.1371/journal.pone.0023062.10.1371/journal.pone.0023062PMC314653021829586Chen D., Yang J. Development of novel antigen receptors for CAR T-cell therapy directed toward solid malignancies. Transl. Res. 2017;187:11–21. doi: 10.1016/j.trsl.2017.05.006.10.1016/j.trsl.2017.05.00628641074Lichtman E.I., Dotti G. Chimeric antigen receptor T-cells for B-cell malignancies. Transl. Res. 2017;187:59–82. doi: 10.1016/j.trsl.2017.06.011.10.1016/j.trsl.2017.06.01128719798Ilieva K.M., Cheung A., Mele S., Chiaruttini G., Crescioli S., Griffin M., Nakamura M., Spicer J.F., Tsoka S., Lacy K.E., et al. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types. Front Immunol. 2018;8:1911. doi: 10.3389/fimmu.2017.01911.10.3389/fimmu.2017.01911PMC576772529375561Rodriguez A., Brown C., Badie B. Chimeric antigen receptor T-cell therapy for glioblastoma. Transl. Res. 2017;187:93–102. doi: 10.1016/j.trsl.2017.07.003.10.1016/j.trsl.2017.07.00328755873Pellegatta S., Savoldo B., Di Ianni N., Corbetta C., Chen Y., Patané M., Sun C., Pollo B., Ferrone S., DiMeco F., et al. Constitutive and TNFα-inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: Implications for CAR-T cell therapy. Sci. Transl. Med. 2018;10:430. doi: 10.1126/scitranslmed.aao2731.10.1126/scitranslmed.aao2731PMC871344129491184Trotter J., Karram K., Nishiyama A. NG2 cells: Properties, progeny and origin. Brain Res. Rev. 2010;63:72–82. doi: 10.1016/j.brainresrev.2009.12.006.10.1016/j.brainresrev.2009.12.006PMC286283120043946Campoli M., Ferrone S., Wang X. Functional and clinical relevance of chondroitin sulphate proteoglycan 4. Adv. Cancer Res. 2010;109:73–121.21070915Yadavilli S., Scafidi J., Becher O.J., Saratsis A.M., Hiner R.L., Kambhampati M., Mariarita S., MacDonald T.J., Codispoti K.E., Magge S.N., et al. The emerging role of NG2 in pediatric diffuse intrinsic pontine glioma. Oncotarget. 2015;6:12141–12155. doi: 10.18632/oncotarget.3716.10.18632/oncotarget.3716PMC449492825987129Stallcup W.B. The NG2 antigen, a putative lineage marker: Immunofluorescent localization in primary cultures of rat brain. Dev. Biol. 1981;83:154–165. doi: 10.1016/S0012-1606(81)80018-8.10.1016/S0012-1606(81)80018-87016634Wilson B.S., Ruberto G., Ferrone S. Immunochemical characterization of a human high molecular weight--melanoma associated antigen identified with monoclonal antibodies. Cancer Immunol. Immunother. 1983;14:196–201. doi: 10.1007/BF00205360.10.1007/BF00205360PMC110391246188530Nishiyama A., Dahlin K.J., Prince J.T., Johnstone S.R., Stallcup W.B. The primary structure of NG2, a novel membrane-spanning proteoglycan. J. Cell Biol. 1991;114:359–371. doi: 10.1083/jcb.114.2.359.10.1083/jcb.114.2.359PMC22890791906475Stallcup W.B., Dahlin-Huppe K. Chondroitin sulfate and cytoplasmic domain-dependent membrane targeting of the NG2 proteoglycan promotes retraction fiber formation and cell polarization. J. Cell Sci. 2001;114:2315–2325.11493670Sakry D., Neitz A., Singh J., Frischknecht R., Marongiu D., Binamé F., Perera S.S., Endres K., Lutz B., Radyushkin K., et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol. 2014;12:e1001993. doi: 10.1371/journal.pbio.1001993.10.1371/journal.pbio.1001993PMC422763725387269Buffo A., Vosko M.R., Ertürk D., Hamann G.F., Jucker M., Rowitch D., Götz M. Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proc. Natl. Acad. Sci. USA. 2005;102:18183–18188. doi: 10.1073/pnas.0506535102.10.1073/pnas.0506535102PMC131238816330768Sakry D., Trotter J. The role of the NG2 proteoglycan in OPC and CNS network function. Brain Res. 1638:161–166. doi: 10.1016/j.brainres.2015.06.003.10.1016/j.brainres.2015.06.00326100334You W.K., Yotsumoto F., Sakimura K., Adams R.H., Stallcup W.B. NG2 proteoglycan promotes tumor vascularization via integrin–dependent effects on pericyte function. Angiogenesis. 2014;17:61–76. doi: 10.1007/s10456-013-9378-1.10.1007/s10456-013-9378-1PMC389835523925489Nakano M., Tamura Y., Yamato M., Kume S., Eguchi A., Takata K., Watanabe Y., Kataoka Y. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. Sci. Rep. 2017;7:42041. doi: 10.1038/srep42041.10.1038/srep42041PMC530732428195192Makagiansar I.T., Williams S., Mustelin T., Stallcup W.B. Differential phosphorylation of NG2 proteoglycan by ERK and PKCalpha helps balance cell proliferation and migration. J. Cell Biol. 2007;178:155–165. doi: 10.1083/jcb.200612084.10.1083/jcb.200612084PMC206443117591920Stallcup W.B. NG2 Proteoglycan Enhances Brain Tumor Progression by Promoting Beta–1 Integrin Activation in both Cis and Trans Orientations. Cancers. 2017;9:31. doi: 10.3390/cancers9040031.10.3390/cancers9040031PMC540670628362324Lin X.H., Dahlin-Huppe K., Stallcup W.B. Interaction of the NG2 proteoglycan with the actin cytoskeleton. J. Cell Biochem. 1996;63:463–477. doi: 10.1002/(SICI)1097-4644(19961215)63:4<463::AID-JCB8>3.0.CO;2-R.10.1002/(SICI)1097-4644(19961215)63:4<463::AID-JCB8>3.0.CO;2-R8978462Fukushi J., Makagiansar I.T., Stallcup W.B. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol. Biol. Cell. 2004;15:3580–3590. doi: 10.1091/mbc.e04-03-0236.10.1091/mbc.e04-03-0236PMC49182015181153Nicolosi P.A., Dallatomasina A., Perris R. Theranostic impact of NG2/CSPG4 proteoglycan in cancer. Theranostics. 2015;5:530–544. doi: 10.7150/thno.10824.10.7150/thno.10824PMC435001425767619Stallcup W.B., You W.K., Kucharova K., Cejudo-Martin P., Yotsumoto F. Proteoglycan-dependent contributions of pericytes and macrophages to brain tumor vascularization and progression. Microcirculation. 2016;23:122–133. doi: 10.1111/micc.12251.10.1111/micc.12251PMC474415426465118Ampofo E., Schmitt B.M., Menger M.D., Laschke M.W. The regulatory mechanisms of NG2/CSPG4 expression. Cell Mol. Biol. Lett. 2017;22:4. doi: 10.1186/s11658-017-0035-3.10.1186/s11658-017-0035-3PMC541584128536635Stallcup W.B., Huang F.J. A role for the NG2 proteoglycan in glioma progression. Cell Adh. Migr. 2008;2:192–201. doi: 10.4161/cam.2.3.6279.10.4161/cam.2.3.6279PMC263408819262111Nishiyama A., Lin X.H., Giese N., Heldin C.H., Stallcup W.B. Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J. Neurosci. Res. 1996;43:315–330. doi: 10.1002/(SICI)1097-4547(19960201)43:3<315::AID-JNR6>3.0.CO;2-M.10.1002/(SICI)1097-4547(19960201)43:3<315::AID-JNR6>3.0.CO;2-M8714520Horner P.J., Thallmair M., Gage F.H. Defining the NG2-expressing cell of the adult CNS. J. Neurocytol. 2002;31:469–480. doi: 10.1023/A:1025739630398.10.1023/A:102573963039814501217Shoshan Y., Nishiyama A., Chang A., Mörk S., Barnett G.H., Cowell J.K., Trapp B.D., Staugaitis S.M. Expression of oligodendrocyte progenitor cell antigens by gliomas: Implications for the histogenesis of brain tumors. Proc. Natl. Acad. Sci. USA. 1999;96:10361–10366. doi: 10.1073/pnas.96.18.10361.10.1073/pnas.96.18.10361PMC1789310468613Peters A. A fourth type of neuroglial cell in the adult central nervous system. J. Neurocytol. 2004;33:345–357. doi: 10.1023/B:NEUR.0000044195.64009.27.10.1023/B:NEUR.0000044195.64009.2715475689Gensert J.M., Goldman J.E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron. 1997;19:197–203. doi: 10.1016/S0896-6273(00)80359-1.10.1016/S0896-6273(00)80359-19247275Ong W.Y., Levine J.M. A light and electron microscopic study of NG2 chondroitin sulphate proteoglycan–positive oligodendrocyte precursor cells in the normal and kainite-lesioned rat hippocampus. Neuroscience. 1999;92:83–95. doi: 10.1016/S0306-4522(98)00751-9.10.1016/S0306-4522(98)00751-910392832Butt A.M., Kiff J., Hubbard P., Berry M. Synantocytes: New functions for novel NG2 expressing glia. J. Neurocytol. 2002;31:551–565. doi: 10.1023/A:1025751900356.10.1023/A:102575190035614501223Paukert M., Bergles D.E. Synaptic communication between neurons and NG2+ cells. Curr. Opin. Neurobiol. 2006;16:515–521. doi: 10.1016/j.conb.2006.08.009.10.1016/j.conb.2006.08.00916962768Aguirre A.A., Chittajallu R., Belachew S., Gallo V. NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J. Cell Biol. 2004;165:575–589. doi: 10.1083/jcb.200311141.10.1083/jcb.200311141PMC217234715159421Balenci L., Saoudi Y., Grunwald D., Deloulme J.C., Bouron A., Bernards A., Baudier J. IQGAP1 regulates adult neural progenitors in vivo and vascular endothelial growth factor-triggered neural progenitor migration in vitro. J. Neurosci. 2007;27:4716–4724. doi: 10.1523/JNEUROSCI.0830-07.2007.10.1523/JNEUROSCI.0830-07.2007PMC667298617460084Wilson H.C., Scolding N.J., Raine C.S. Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J. Neuroimmunol. 2006;176:162–173. doi: 10.1016/j.jneuroim.2006.04.014.10.1016/j.jneuroim.2006.04.01416753227Baracskay K.L., Kidd G.J., Miller R.H., Trapp B.D. NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia. 2007;55:1001–1010. doi: 10.1002/glia.20519.10.1002/glia.2051917503442Scherer S.S., Braun P.E., Grinspan J., Collarini E., Wang D.Y., Kamholz J. Differential regulation of the 2′,3′-cyclic nucleotide 3’-phosphodiesterase gene during oligodendrocyte development. Neuron. 1994;12:1363–1375. doi: 10.1016/0896-6273(94)90451-0.10.1016/0896-6273(94)90451-08011341Sugiarto S., Persson A.I., Munoz E.G., Waldhuber M., Lamagna C., Andor N., Hanecker P., Ayers-Ringler J., Phillips J., Siu J., et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20:328–340. doi: 10.1016/j.ccr.2011.08.011.10.1016/j.ccr.2011.08.011PMC329749021907924Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–1068.PMC267164218772890Lindberg N., Kastemar M., Olofsson T., Smits A., Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28:2266–2275. doi: 10.1038/onc.2009.76.10.1038/onc.2009.7619421151Dai C., Celestino J.C., Okada Y., Louis D.N., Fuller G.N., Holland E.C. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15:1913–1925. doi: 10.1101/gad.903001.10.1101/gad.903001PMC31274811485986Johansson F.K., Göransson H., Westermark B. Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene. 2005;24:3896–3905. doi: 10.1038/sj.onc.1208553.10.1038/sj.onc.120855315750623Hu X., Holland E.C. Applications of mouse glioma models in preclinical trials. Mutat. Res. 2005;576:54–65. doi: 10.1016/j.mrfmmm.2004.08.023.10.1016/j.mrfmmm.2004.08.02316011838Shih A.H., Holland E.C. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett. 2006;232:139–147. doi: 10.1016/j.canlet.2005.02.002.10.1016/j.canlet.2005.02.00216139423Briançon-Marjollet A., Balenci L., Fernandez M., Estève F., Honnorat J., Farion R., Beaumont M., Barbier E., Rémy C., Baudier J. NG2-expressing glial precursor cells are a new potential oligodendroglioma cell initiating population in N-ethyl-N-nitrosourea-induced gliomagenesis. Carcinogenesis. 2010;31:1718–1725. doi: 10.1093/carcin/bgq154.10.1093/carcin/bgq154PMC330818620651032Engelhardt A. Detection of acid mucopolysaccharides in human brain tumors by histochemical methods. Acta Neuropathol. 1980;49:199–203. doi: 10.1007/BF00707107.10.1007/BF007071076445154Böck P., Jellinger K. Detection of glycosaminoglycans in human gliomas by histochemical methods. Acta Neuropathol. Suppl. 1981;7:81–84.6939290Giordana M.T., Mauro A., Schiffer D. Glycosaminoglycans of brain tumors transplacentally induced by ENU in the rat. Acta Neuropathol. Suppl. 1981;7:79–80.6939289Giordana M.T., Bertolotto A., Mauro A., Migheli A., Pezzotta S., Racagni G., Schiffer D. Glycosaminoglycans in human cerebral tumors. Part II. Histochemical findings and correlations. Acta Neuropathol. 1982;57:299–305. doi: 10.1007/BF00692187.10.1007/BF006921877136509Mauro A., Bertolotto A., Giordana M.T., Magrassi M.L., Migheli A., Schiffer D. Biochemical and histochemical evaluation of glycosaminoglycans in brain tumors induced in rats by nitrosourea derivatives. J. Neurooncol. 1983;1:299–306. doi: 10.1007/BF00165712.10.1007/BF001657126678972Nioka H., Matsumura K., Nakasu S., Handa J. Immunohistochemical localization of glycosaminoglycans in experimental rat glioma models. J. Neurooncol. 1994;21:233–242. doi: 10.1007/BF01063772.10.1007/BF010637727699418Bertolotto A., Goia L., Schiffer D. Immunohistochemical study of chondroitin sulphate in human gliomas. Acta Neuropathol. 1986;72:189–196. doi: 10.1007/BF00685982.10.1007/BF006859823103373Persson A.I., Petritsch C., Swartling F.J., Itsara M., Sim F.J., Auvergne R., Goldenberg D.D., Vandenberg S.R., Nguyen K.N., Yakovenko S., et al. Non–stem cell origin for oligodendroglioma. Cancer Cell. 2010;18:669–682. doi: 10.1016/j.ccr.2010.10.033.10.1016/j.ccr.2010.10.033PMC303111621156288Guha A., Feldkamp M.M., Lau N., Boss G., Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene. 1997;15:2755–2765. doi: 10.1038/sj.onc.1201455.10.1038/sj.onc.12014559419966Yadavilli S., Hwang E.I., Packer R.J., Nazarian J. The Role of NG2 Proteoglycan in Glioma. Transl. Oncol. 2016;9:57–63. doi: 10.1016/j.tranon.2015.12.005.10.1016/j.tranon.2015.12.005PMC480006126947882Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020.10.1016/j.ccr.2009.12.020PMC281876920129251Chekenya M., Pilkington G.J. NG2 precursor cells in neoplasia: Functional, histogenesis and therapeutic implications for malignant brain tumours. J. Neurocytol. 2002;31:507–521. doi: 10.1023/A:1025795715377.10.1023/A:102579571537714501220Bouvier C., Bartoli C., Aguirre-Cruz L., Virard I., Colin C., Fernandez C., Gouvernet J., Figarella-Branger D. Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. J. Neurosurg. 2003;99:344–350. doi: 10.3171/jns.2003.99.2.0344.10.3171/jns.2003.99.2.034412924709Ligon K.L., Alberta J.A., Kho A.T., Weiss J., Kwaan M.R., Nutt C.L., Louis D.N., Stiles C.D., Rowitch D.H. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J. Neuropathol. Exp. Neurol. 2004;63:499–509. doi: 10.1093/jnen/63.5.499.10.1093/jnen/63.5.49915198128Schrappe M., Klier F.G., Spiro R.C., Waltz T.A., Reisfeld R.A., Gladson C.L. Correlation of chondroitin sulphate proteoglycan expression on proliferating brain capillary endothelial cells with the malignant phenotype of astroglial cells. Cancer Res. 1991;51:4986–4993.1893386Tsidulko A.Y., Kazanskaya G.M., Kostromskaya D.V., Aidagulova S.V., Kiselev R.S., Volkov A.M., Kobozev V.V., Gaitan A.S., Krivoshapkin A.L., Grigorieva E.V. Prognostic relevance of NG2/CSPG4, CD44 and Ki-67 in patients with glioblastoma. Tumour Biol. 2017;39 doi: 10.1177/1010428317724282.10.1177/101042831772428228945172Svendsen A., Verhoeff J.J., Immervoll H., Brøgger J.C., Kmiecik J., Poli A., Netland I.A., Prestegarden L., Planagumà J., Torsvik A., et al. Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. Acta Neuropathol. 2011;122:495–510. doi: 10.1007/s00401-011-0867-2.10.1007/s00401-011-0867-2PMC318522821863242Gensert J.M., Goldman J.E. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. J. Neurobiol. 2001;48:75–86. doi: 10.1002/neu.1043.10.1002/neu.104311438938Uhrbom L., Hesselager G., Ostman A., Nistér M., Westermark B. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells. Int. J. Cancer. 2000;85:398–406. doi: 10.1002/(SICI)1097-0215(20000201)85:3<398::AID-IJC17>3.0.CO;2-L.10.1002/(SICI)1097-0215(20000201)85:3<398::AID-IJC17>3.0.CO;2-L10652433Yokoo H., Nobusawa S., Takebayashi H., Ikenaka K., Isoda K., Kamiya M., Sasaki A., Hirato J., Nakazato Y. Anti-human Olig2 antibody as a useful immunohistochemical marker of normal oligodendrocytes and gliomas. Am. J. Pathol. 2004;164:1717–1725. doi: 10.1016/S0002-9440(10)63730-3.10.1016/S0002-9440(10)63730-3PMC161565315111318Riemenschneider M.J., Koy T.H., Reifenberger G. Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas. Acta Neuropathol. 2004;107:277–282. doi: 10.1007/s00401-003-0809-8.10.1007/s00401-003-0809-814730454Bannykh S.I., Stolt C.C., Kim J., Perry A., Wegner M. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J. Neurooncol. 2006;76:115–127. doi: 10.1007/s11060-005-5533-x.10.1007/s11060-005-5533-x16205963Chekenya M., Krakstad C., Svendsen A., Netland I.A., Staalesen V., Tysnes B.B., Selheim F., Wang J., Sakariassen P.Ø., Sandal T., et al. The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin–dependent PI3K/Akt signaling. Oncogene. 2008;27:5182–5194. doi: 10.1038/onc.2008.157.10.1038/onc.2008.157PMC283231018469852Wade A., Robinson A.E., Engler J.R., Petritsch C., James C.D., Phillips J.J. Proteoglycans and their roles in brain cancer. FEBS J. 2013;280:2399–2417. doi: 10.1111/febs.12109.10.1111/febs.12109PMC364438023281850Burg M.A., Nishiyama A., Stallcup W.B. A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp. Cell. Res. 1997;235:254–264. doi: 10.1006/excr.1997.3674.10.1006/excr.1997.36749281375Wesseling P., Schlingemann R.O., Rietveld F.J., Link M., Burger P.C., Ruiter D.J. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: An immune-light and immune-electron microscopic study. J. Neuropathol. Exp. Neurol. 1995;54:304–310. doi: 10.1097/00005072-199505000-00003.10.1097/00005072-199505000-000037745429Pouly S., Prat A., Blain M., Olivier A., Antel J. NG2 immunoreactivity on human brain endothelial cells. Acta Neuropathol. 2001;102:313–320.11603805Ozerdem U., Grako K.A., Dahlin-Huppe K., Monosov E., Stallcup W.B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn. 2001;222:218–227. doi: 10.1002/dvdy.1200.10.1002/dvdy.120011668599Ozerdem U., Stallcup W.B. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis. 2003;6:241–249. doi: 10.1023/B:AGEN.0000021401.58039.a9.10.1023/B:AGEN.0000021401.58039.a9PMC137106215041800Virgintino D., Girolamo F., Errede M., Capobianco C., Robertson D., Stallcup W.B., Perris R., Roncali L. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis. 2007;10:35–45. doi: 10.1007/s10456-006-9061-x.10.1007/s10456-006-9061-x17225955Girolamo F., Dallatomasina A., Rizzi M., Errede M., Wälchli T., Mucignat M.T., Frei K., Roncali L., Perris R., Virgintino D. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS ONE. 2013;8:e84883. doi: 10.1371/journal.pone.0084883.10.1371/journal.pone.0084883PMC387342924386429Birbrair A., Zhang T., Wang Z.M., Messi M.L., Olson J.D., Mintz A., Delbono O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am. J. Physiol. Cell Physiol. 2014;307:C25–C38. doi: 10.1152/ajpcell.00084.2014.10.1152/ajpcell.00084.2014PMC408018124788248Silver D.J., Siebzehnrubl F.A., Schildts M.J., Yachnis A.T., Smith G.M., Smith A.A., Scheffler B., Reynolds B.A., Silver J., Steindler D.A. Chondroitin sulphate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. J. Neurosci. 2013;33:15603–15617. doi: 10.1523/JNEUROSCI.3004-12.2013.10.1523/JNEUROSCI.3004-12.2013PMC378262924068827Cheng L., Huang Z., Zhou W., Wu Q., Donnola S., Liu J.K., Fang X., et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–152. doi: 10.1016/j.cell.2013.02.021.10.1016/j.cell.2013.02.021PMC363826323540695Schiffer D., Mellai M., Bovio E., Bisogno I., Casalone C., Annovazzi L. Glioblastoma niches: From the concept to the phenotypical reality. Neurol. Sci. 2018;39:1–8. doi: 10.1007/s10072-018-3408-0.10.1007/s10072-018-3408-029736738Al-Mayhani M.T., Grenfell R., Narita M., Piccirillo S., Kenney-Herbert E., Fawcett J.W., Collins V.P., Ichimura K., Watts C. NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature. Neuro Oncol. 2011;13:830–845. doi: 10.1093/neuonc/nor088.10.1093/neuonc/nor088PMC314547621798846Schrappe M., Bumol T.F., Apelgren L.D., Briggs S.L., Koppel G.A., Markowitz D.D., Mueller B.M., Reisfeld R.A. Long-term growth suppression of human glioma xenografts by chemoimmunoconjugates of 4-desacetylvinblastine-3-carboxyhydrazide and monoclonal antibody 9.2.27. Cancer Res. 1992;52:3838–3844.1617657Poli A., Wang J., Domingues O., Planagumà J., Yan T., Rygh C.B., Skaftnesmo K.O., Thorsen F., McCormack E., Hentges F., et al. Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget. 2013;4:1527–1546. doi: 10.18632/oncotarget.1291.10.18632/oncotarget.1291PMC382452524127551Kmiecik J., Gras Navarro A., Poli A., Planagumà J.P., Zimmer J., Chekenya M. Combining NK cells and mAb9.2.27 to combat NG2–dependent and anti-inflammatory signals in glioblastoma. Oncoimmunology. 2014;3:e27185. doi: 10.4161/onci.27185.10.4161/onci.27185PMC391635724575382Higgins S.C., Fillmore H.L., Ashkan K., Butt A.M., Pilkington G.J. Dual targeting NG2 and GD3A using Mab-Zap immunotoxin results in reduced glioma cell viability in vitro. Anticancer Res. 2015;35:77–84.25550537Rygh C.B., Wang J., Thuen M., Gras Navarro A., Huuse E.M., Thorsen F., Poli A., Zimmer J., Haraldseth O., Lie S.A., et al. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma. PLoS ONE. 2014;9:e108414. doi: 10.1371/journal.pone.0108414.10.1371/journal.pone.0108414PMC418247425268630Chang Y., She Z.G., Sakimura K., Roberts A., Kucharova K., Rowitch D.H., Stallcup W.B. Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity. PLoS ONE. 2012;7:e30637. doi: 10.1371/journal.pone.0030637.10.1371/journal.pone.0030637PMC326627122295099Yotsumoto F., You W.K., Cejudo-Martin P., Kucharova K., Sakimura K., Stallcup W.B. NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology. 2015;4:e1001204. doi: 10.1080/2162402X.2014.1001204.10.1080/2162402X.2014.1001204PMC448578926137396Jordaan S., Chetty S., Mungra N., Koopmans I., van Bommel P.E., Helfrich W., Barth S. CSPG4: A Target for Selective Delivery of Human Cytolytic Fusion Proteins and TRAIL. Biomedicines. 2017;5:37. doi: 10.3390/biomedicines5030037.10.3390/biomedicines5030037PMC561829528657611Wang Y., Geldres C., Ferrone S., Dotti G. Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors. Exp. Opin. Ther. Targets. 2015;19:1339–1350. doi: 10.1517/14728222.2015.1068759.10.1517/14728222.2015.106875926190756Beard R.E., Zheng Z., Lagisetty K.H., Burns W.R., Tran E., Hewitt S.M., Abate-Daga D., Rosati S.F., Fine H.A., Ferrone S., et al. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J. Immunother. Cancer. 2014;2:25. doi: 10.1186/2051-1426-2-25.10.1186/2051-1426-2-25PMC415577025197555Pituch K.C., Miska J., Krenciute G., Panek W.K., Li G., Rodriguez-Cruz T., Wu M., Han Y., Lesniak M.S., Gottschalk S., et al. Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma. Mol. Ther. 2018;26:986–995. doi: 10.1016/j.ymthe.2018.02.001.10.1016/j.ymthe.2018.02.001PMC607948029503195Hide T., Komohara Y., Miyasato Y., Nakamura H., Makino K., Takeya M., Kuratsu J.I., Mukasa A., Yano S. Oligodendrocyte Progenitor Cells and Macrophages/Microglia Produce Glioma Stem Cell Niches at the Tumor Border. EBioMedicine. 2018;30:94–104. doi: 10.1016/j.ebiom.2018.02.024.10.1016/j.ebiom.2018.02.024PMC595222629559295Schiffer D., Annovazzi L., Mazzucco M., Mellai M. The Microenvironment in Gliomas: Phenotypic Expressions. Cancers. 2015;7:2352–2359. doi: 10.3390/cancers7040896.10.3390/cancers7040896PMC469589626633514Schmitt B.M., Larschke M.W., Rössler O.G., Huang W., Scheller A., Menger M.D., Ampofo E. Nerve/glial antigen NG2 is a crucial regulator of intercellular adhesion molecules (ICAM)-1 expression. Biochim. Biophys. Acta. 2018;1865:57–66. doi: 10.1016/j.bbamcr.2017.09.019.10.1016/j.bbamcr.2017.09.01928964848Birey F., Kloc M., Chavali M., Hussein I., Wilson M., Christoffel D.J., Chen T., Frohman M.A., Robinson J.K., Russo S.J., et al. Genetic and Stress-Induced Loss of NG2 Glia Triggers Emergence of Depressive-like Behaviors through Reduced Secretion of FGF2. Neuron. 2015;88:941–956. doi: 10.1016/j.neuron.2015.10.046.10.1016/j.neuron.2015.10.046PMC535463126606998trying2... trying... 241501MCID_676f0863afd979c23c0393ad3968667739630037395661993956351439523812proteoglycan"proteoglycane"[All Fields] OR "proteoglycanes"[All Fields] OR "proteoglycans"[MeSH Terms] OR "proteoglycans"[All Fields] OR "proteoglycan"[All Fields]("proteoglycane"[All Fields] OR "proteoglycanes"[All Fields] OR "proteoglycans"[MeSH Terms] OR "proteoglycans"[All Fields] OR "proteoglycan"[All Fields]) AND "cspg4"[All Fields]
trying2... trying... trying2...
The Significance of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in Human Gliomas. | LitMetric
Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by -ethyl--nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target.