OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress.

Plant Physiol Biochem

Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China. Electronic address:

Published: November 2018

JmjC-domain-containing (JmjC) protein, an important kind of histone demethylase in plants, plays key roles in multiple growth and development processes and in adversity resistance. In this study, we found that OsJMJ703, a known histone demethylase, is expressed in various tissues. Furthermore, over-expression of OsJMJ703 influenced the type of rice panicle, and knock-down of the expression of OsJMJ703 showed an earlier flowering time in rice. In addition, OsJMJ703 is involved in abiotic stress. Transgenic rice of over-expressing OsJMJ703 is sensitive to drought stress, whereas knocking down OsJMJ703 enhances the tolerance to drought stress. This study provides a theoretical basis of the biological function of JmjC protein and further promotes the study of drought resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2018.09.007DOI Listing

Publication Analysis

Top Keywords

histone demethylase
12
drought stress
12
plays key
8
key roles
8
jmjc protein
8
osjmj703
7
osjmj703 rice
4
rice histone
4
demethylase gene
4
gene plays
4

Similar Publications

Background: CREB binding protein (CREBBP) is a key epigenetic regulator, altered in a fifth of relapsed cases of acute lymphoblastic leukemia (ALL). Selectively targeting epigenetic signaling may be an effective novel therapeutic approach to overcome drug resistance. Anti-tumor effects have previously been demonstrated for GSK-J4, a selective H3K27 histone demethylase inhibitor, in several animal models of cancers.

View Article and Find Full Text PDF

KDM4A Silencing Reverses Cisplatin Resistance in Ovarian Cancer Cells by Reducing Mitophagy via SNCA Transcriptional Inactivation.

Curr Mol Med

January 2025

Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Ningbo University, No.59 Liuting Street, Haishu District, Ningbo City, Zhejiang Province, 315010, China.

Background: Ovarian cancer is one of the deadliest gynecologic cancers, with chemotherapy resistance as the greatest clinical challenge. Autophagy occurrence is associated with cisplatin (DDP)-resistant ovarian cancer cells. Herein, the role and mechanism of alpha-synuclein (SNCA), the autophagy-related gene, in DDP resistance of ovarian cancer cells are explored.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is increasingly recognized for its link to idiopathic pulmonary fibrosis (IPF), though the underlying mechanisms remain poorly understood. Histone lysine demethylase 6B (KDM6B) may either prevent or promote organ fibrosis, but its specific role in IPF is yet to be clarified. This study aimed to investigate the function and mechanisms of KDM6B in IPF and the exacerbating effects of OSA.

View Article and Find Full Text PDF

Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) is a chromatin modifier responsible for regulating the demethylation of histone H3 lysine 27 trimethylation (H3K27me3), which is crucial for human neurodevelopment. To date, the impact of UTX on neurodevelopment remains elusive. Therefore, this study aimed to investigate the potential molecular mechanisms underlying the effects of UTX on neurodevelopment through untargeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

View Article and Find Full Text PDF

Growing evidence shows that lysine methylation is a widespread protein post-translational modification (PTM) that regulates protein function on histone and nonhistone proteins. Numerous studies have demonstrated that the dysregulation of lysine methylation mediators contributes to cancer growth and chemotherapeutic resistance. While changes in histone methylation are well-documented with extensive analytical techniques available, there is a lack of high-throughput methods to reproducibly quantify changes in the abundances of the mediators of lysine methylation and nonhistone lysine methylation (Kme) simultaneously across multiple samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!