Growing numbers of nanotoxicity research demonstrating that mechanical damage and oxidative stress are potential modes of nanoparticles (NPs) induced toxicity. However, the underlying mechanisms by which NPs interact with the eukaryotic cell and affect their physiological and metabolic functions are not fully known. We investigated the toxic effects of zinc oxide nanoparticles (ZnO-NPs) on budding yeast, Saccharomyces cerevisiae and elucidated the underlying mechanism. We observed cell wall damage and accumulation of reactive oxygen species (ROS) leading to cell death upon ZnO-NPs exposure. We detected a significant change in the cellular distribution of lipid biosynthetic enzymes (Fas1 and Fas2). Furthermore, exposure of ZnO-NPs altered the architecture of endoplasmic reticulum (ER) and mitochondria as well as ER-mitochondria encounter structure (ERMES) complex causing cellular toxicity due to lipid disequilibrium and proteostasis. We also observed significant changes in heat shock and unfolded protein responses, monitored by Hsp104-GFP localization and cytosolic Hac1 splicing respectively. Moreover, we observed activation of MAP kinases of CWI (Mpk1) and HOG (Hog1) pathways upon exposure to ZnO-NPs. Transcript level analyses showed induction of chitin synthesis and redox homeostasis genes. Finally, we observed induction in lipid droplets (LDs) formation, distorted vacuolar morphology and induction of autophagy as monitored by localization of Atg8p. However, we did not observe any significant change in epigenetic marks, examined by western blotting. Altogether, we provide evidence that exposure of ZnO-NPs results in cell death by affecting cell wall integrity and ER homeostasis as well as accumulation of ROS and saturated free fatty acids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.09.028DOI Listing

Publication Analysis

Top Keywords

cell wall
12
exposure zno-nps
12
zinc oxide
8
oxide nanoparticles
8
wall integrity
8
saccharomyces cerevisiae
8
cell death
8
cell
6
zno-nps
5
nanoparticles induce
4

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms.

View Article and Find Full Text PDF

Mitochondrial Porin Is Required for Versatile Biocontrol Trait-Involved Biological Processes in a Filamentous Insect Pathogenic Fungus.

J Agric Food Chem

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China.

The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi.

View Article and Find Full Text PDF

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

The aim of this study was to elucidate the impact of porcine pancreatic enzymes (Creon pancrelipase) in comparison to microbial-derived alpha amylase (MD amylase) on the small intestine wall structure, mucosal glycogen accumulation, and enterocyte turnover. The impact of enzyme supplementation on the small intestine was explored in 18 pigs with surgically induced exocrine pancreatic insufficiency (EPI). Four healthy pigs served as the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!