A novel study of synthesizing the temperature-responsive polymer grafted cellulose filaments/Poly (N-isopropylacrylamide) (NIPAM) spheres (P-MCCBs) was carried out for the removal of dyes and heavy metal ions. The novelty of the presented work consists of the application of the nano-sized pore-forming agent (Calcium Carbonate) and the introduction of a temperature-responsive monomer (NIPAM) while preparing the adsorbents. In addition, the spherical adsorbents were synthesized through an in-situ free radical polymerization using a microwave-assisted heating approach. The morphology, chemical structure, pH, and thermal sensitivity of P-MCCBs were characterized properly. The adsorption and desorption behaviors of dyes and heavy metal ions on P-MCCBs were also investigated. The results showed that P-MCCBs exhibited a fast adsorption rate, the adsorption equilibrium reached within 80 min and 40 min for MB and Pb, respectively (25 °C). Moreover, around 5-8% and 20% of adsorbed MB and Pb were released at the temperature above 45 °C. The adsorption kinetics followed pseudo-second-order model, and the desorption process was fit well using Higuchi and Korsmeyer-Peppas models. These results indicated that P-MCCBs could be served as a novel material for controllable adsorption and desorption processes of various contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.09.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!