It is well-known that interaction of hydrophobic powders with water is weak, and upon mixing, they typically form separated phases. Preparation of hydrophobic nanosilica AM1 with a relatively large content of bound water with no formation of separated phases was the aim of this study. Unmodified nanosilica A-300 and initial AM1 (A-300 completely hydrophobized by dimethyldichlorosilane), compacted A-300 (cA-300), and compacted AM1 (cAM1) containing 50-58 wt % of bound water were studied using low-temperature H NMR spectroscopy, thermogravimetry, infrared spectroscopy, microscopy, small-angle X-ray scattering, nitrogen adsorption, and theoretical modeling. After mechanical activation (∼20 atm) upon stirring of AM1/water mixture at the degree of hydration h = 1.0 or 1.4 g of distilled water per gram of dry silica, all water is bound and the blend has the bulk density of 0.7 g/cm. The temperature and interfacial behaviors of bound water depend strongly on a dispersion media type (air, chloroform, and chloroform with trifluoroacetic acid (4:1)) because the boundary area between immiscible water and chloroform should be minimal. Water and chloroform molecules are of different sizes affecting their distribution in pores (voids between silica nanoparticles in their aggregates) of different sizes. Structural, morphological, and textural characteristics of silicas, and environmental features affect not only the distribution of bound water, but also the amounts of strongly (frozen at T < 260 K) and weakly (frozen at 260 K < T < 273 K) bound and strongly (chemical shift δ = 4-6 ppm) and weakly (δ = 1-2 ppm) associated waters. Despite the changes in the characteristics of cAM1, it demonstrates a flotation effect. The developed system with cAM1/bound water could be of interest from a practical point of view due to controlled interactions with aqueous surroundings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b03110 | DOI Listing |
J Chem Inf Model
January 2025
Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
Zwitterionic polymers exhibit strong hydration, high biocompatibility, and antifouling properties. Dendrimers are regularly branched polymers, which are used in the drug delivery system (DDS). In this study, we synthesized zwitterionic monomer- and polymer-conjugated dendrimers as a biocompatible nanoparticle to investigate the relation between the hydration property and biodistribution.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France. Electronic address:
Plastic products contain complex mixtures of chemical compounds that are incorporated into polymers to improve material properties. Besides the intentional chemical additives, other compounds including residual monomers and non-intentionnaly added substances (NIAS) as well as sorbed pollutants are usually also present in aged plastic. Since most of these substances are only loosely bound to the polymer via non-covalently interactions, i.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
HUN-REN Molecular Interactions in Separation Science Research Group, Ifjúság útja 6, H-7624 Pécs, Hungary; Department of Analytical and Environmental Chemistry and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary; Institute of Bioanalysis, Medical Scool, University of Pécs, Szigeti út, H-7624 Pécs, Hungary. Electronic address:
Non-destructive chromatographic methods were used to determine the hold-up volumes of four self-packed columns containing embedded phosphate groups. The stationary phases are named Diol-P-C10, Diol-P-C18, Diol-P-Benzyl and Diol-P-Chol. The hydrophobicity of organic ligands bound to the phosphate group increases in the benzyl< decyl < octadecyl
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!