We report unphysical irregularities and discontinuities in some key experimentally measurable quantities computed within the GW approximation of many-body perturbation theory applied to molecular systems. In particular, we show that the solution obtained with partially self-consistent GW schemes depends on the algorithm one uses to self-consistently solve the quasiparticle (QP) equation. The main observation of the present study is that each branch of the self-energy is associated with a distinct QP solution and that each switch between solutions implies a significant discontinuity in the quasiparticle energy as a function of the internuclear distance. Moreover, we clearly observe "ripple" effects, i.e., when a discontinuity in one of the QP energies induces (smaller) discontinuities in the other QP energies. Going from one branch to another implies a transfer of weight between two solutions of the QP equation. The cases of occupied, virtual, and frontier orbitals are separately discussed on distinct diatomics. In particular, we show that multisolution behavior in frontier orbitals is more likely if the HOMO-LUMO gap is small.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.8b00745 | DOI Listing |
J Chem Theory Comput
January 2025
Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China.
As an approximation to SDSCI [static-dynamic-static (SDS) configuration interaction (CI), a minimal MRCI; , , 1481], SDSPT2 [ , , 2696] is a CI-like multireference (MR) second-order perturbation theory (PT2) that treats single and multiple roots in the same manner. This feature permits the use of configuration selection over a large complete active space (CAS) to end up with a much reduced reference space ̃, which is connected only with a small portion (̃) of the full first-order interacting space connected to . The most expensive portion of the reduced interacting ̃ space (which involves three active orbitals) can further be truncated by partially bypassing its generation followed by an integral-based cutoff.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China.
A hybrid analytical-numerical integration scheme is introduced to accelerate the Fock build in self-consistent field (SCF) and time-dependent density functional theory (TDDFT) calculations. To evaluate the Coulomb matrix [], the density matrix is first decomposed into two parts, the superposition of atomic density matrices and the rest = -. While [] is evaluated analytically, [] is evaluated fully numerically [with the multipole expansion of the Coulomb potential (MECP)] during the SCF iterations.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.
View Article and Find Full Text PDFChemistry
January 2025
Middle East Technical University: Orta Dogu Teknik Universitesi, Chemistry, Universiteler Mah., 06800, Cankaya, TURKEY.
This study introduces a new donor group capable of activating click-type [2+2] cycloaddition-retroelectrocyclizations, generally known for their limited scope. Target chromophores were synthesized using isocyanate-free urethane synthesis. The developed synthetic method allows for the tuning of the optical properties of the chromophores by modifying the donor groups, the acceptor units, and the side chains.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala, 686101, India.
This computational study investigated the catalytic efficiency of novel RhCp complexes (X = CF, SiF, CCl, SOH) in [3 + 2] azide-alkyne cycloaddition reactions density functional theory (MN12-L/Def2-SVP). Through quantum mechanical approaches, we explore the impact of different substituents on the Cp* ligand on the mechanism, selectivity, and reactivity of these Rh-based catalysts. Non-covalent interaction (NCI) and reduced density gradient (RDG) analyses, along with frontier molecular orbital (FMO) and Hirshfeld atomic charge analyses, were utilized to assess ligand stability and catalytic performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!