A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stimulation of oxygen consumption at the cytochrome A3 level inhibits aldosterone biosynthesis from 18-hydroxycorticosterone. | LitMetric

A mitochondrial preparation from duck adrenal gland was used, under aerobic conditions, to show that the oxygen requirement for the last step of aldosterone biosynthesis (transformation of 18-hydroxycorticosterone into aldosterone) is at the cytochrome P-450 level only. Vitamin C and tetramethyl-p-phenylene-diamine (TMPD) were used to increase oxygen consumption at the cytochrome a3 level, thereby decreasing its availability to cytochrome P-450. The vitamin C plus TMPD system acts as an 'oxygen trap'. Results show that despite reducing equivalents provided by L-malate, vitamin C plus TMPD strongly inhibits aldosterone biosynthesis from 18-hydroxycorticosterone (89%). Moreover, we used KCN in order to block oxygen consumption, even in the presence of vitamin C plus TMPD. Under these conditions, the inhibition of aldosterone biosynthesis from 18-hydroxycorticosterone is reduced by 51%. The reversal of this inhibition by KCN was evident but only partial. According to polarographic and electron microscopy studies, the reversal of inhibition can only be explained by an increased availability of oxygen at the cytochrome P-450 level. Experiments performed under aerobic conditions, without a nitrogen atmosphere, show that oxygen is required in the transformation of 18-hydroxycorticosterone into aldosterone, at the cytochrome P-450 level. This suggests that a classical hydroxylating mechanism is involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-4165(86)90173-xDOI Listing

Publication Analysis

Top Keywords

aldosterone biosynthesis
16
cytochrome p-450
16
oxygen consumption
12
biosynthesis 18-hydroxycorticosterone
12
p-450 level
12
vitamin tmpd
12
consumption cytochrome
8
cytochrome level
8
inhibits aldosterone
8
aerobic conditions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!