Changing healthcare requires future physicians to have some basic knowledge of fields related to medicine. There is also a growing need for multidisciplinary and interdisciplinary education in the basic medical curriculum. The basic curriculum is currently being revised on the national level, but this is taking a long time. We are using a practical example to discuss how student-driven education could be a catalyst for rapid change in medical education.

Download full-text PDF

Source

Publication Analysis

Top Keywords

education catalyst
8
change medical
8
[student-driven education
4
catalyst change
4
medical curriculum]
4
curriculum] changing
4
changing healthcare
4
healthcare requires
4
requires future
4
future physicians
4

Similar Publications

The hydrogenation of carbon dioxide into profitable chemicals is a viable path toward achieving the objective of carbon neutrality. However, the typical approach for hydrogenation of CO heavily relies on thermally driven catalysis at high temperatures, which is not aligned with the goals of carbon neutrality. Thus, there is a critical need to explore new catalytic methods for the high-efficiency conversion of CO.

View Article and Find Full Text PDF

Self-signaling colorimetric sensor for selective detection of dopamine based on CoFeO nanozyme accelerated dopamine polymerization.

Anal Chim Acta

February 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, China. Electronic address:

Background: Reliable and selective detection of dopamine is crucial for the early diagnosis of various diseases. Transition metal based-nanozymes have shown great promise in the field of colorimetric detection of dopamine due to their remarkable stability and exceptional catalytic efficiency. However, these transition metal-based nanozymes typically function through a chromogenic reaction that relies on additional organic substrates, such as 3,3',5,5'-tetramethylbenzidine, to generate a detectable signal.

View Article and Find Full Text PDF

Establishment of Gas-Liquid-Solid Interface on Multilevel Porous CuO for Potential-Driven Selective CO Electroreduction toward C or C Products.

ACS Appl Mater Interfaces

January 2025

College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China.

Copper-based catalysts demonstrate distinctive multicarbon product activity in the CO electroreduction reaction (CORR); however, their low selectivity presents significant challenges for practical applications. Herein, we have developed a multilevel porous spherical CuO structure, wherein the mesopores are enriched with catalytic active sites and effectively stabilize Cu, while the macropores facilitate the formation of a "gas-liquid-solid" three-phase interface, thereby creating a microenvironment with an increasing water concentration gradient from the interior to the exterior. Potential-driven phase engineering and protonation synergistically optimize the reaction pathway, facilitating a switch between CO and CH.

View Article and Find Full Text PDF

Methane, the major component of natural and shale gas, is a significant carbon source for chemical synthesis. The direct partial oxidation of methane to liquid oxygenates under mild conditions is an attractive pathway, but the molecule's inertness makes it challenging to achieve simultaneously high conversion and high selectivity towards a single target product. This difficulty is amplified when aiming for more valuable products that require C-C coupling.

View Article and Find Full Text PDF

"Cu-N" Site-Driven Selectivity Switch for Electrocatalytic CO Reduction.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

The comprehensive understanding of the effect of the chemical environment surrounding active sites on the pathway for the electrochemical carbon dioxide reduction reaction (eCORR) is essential for the development of advanced catalysts for large-scale applications. Based on a series of model catalysts engineered by the coordination of copper ions with various isomers of phenylenediamine [i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!