Differential interference contrast (DIC) microscopy is a powerful technique for imaging phase objects in transparent samples but does not work with scattering samples. This Letter, to the best of our knowledge, describes a new technique for obtaining DIC-like phase-gradient images in scattering media based on differential detection of forward-scattered light, using detectors arranged in a ring configuration around the microscope objective pupil or its conjugate pupil plane. This method, called pupil plane differential detection (P2D2) microscopy, does not need polarization optics or a confocal pinhole, yet produces images that are free of speckles and interference noises. We compared the P2D2 imaging technique with reflectance confocal microscopy and demonstrated P2D2 as a simple add-on to conventional laser scanning microscopes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492546 | PMC |
http://dx.doi.org/10.1364/OL.43.004410 | DOI Listing |
Adaptive optics (AO) improves the spatial resolution of microscopy by correcting optical aberrations. While its application has been well established in microscopy modalities utilizing a circular pupil, its adaptation to systems with non-circular pupils, such as Bessel-focus two-photon fluorescence microscopy (2PFM) with an annular pupil, remains relatively uncharted. Herein, we present a modal focal AO (MFAO) method for Bessel-focus 2PFM.
View Article and Find Full Text PDFJ Cataract Refract Surg
January 2025
Vision and Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, UK.
Purpose: To measure visual acuity at three different defocus planes in pseudophakic subjects with varying levels of spherical aberration induced by an adaptive optics visual simulator. The study aimed to simulate Extended Depth of Focus (EDOF) intraocular lenses (IOLs).
Setting: Private hospital (IMO, Barcelona, Spain).
Transl Vis Sci Technol
January 2025
Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
Purpose: Although the lens undoubtedly plays a major role in presbyopia, altered lens function could be in part secondary to age-related changes of the ciliary muscle. Ciliary muscle changes with accommodation have been quantified using optical coherence tomography, but so far these studies have been limited to quantifying changes in ciliary muscle thickness, mostly at static accommodative states. Quantifying ciliary muscle thickness changes does not effectively capture the dynamic anterior-centripetal movement of the ciliary muscle during accommodation.
View Article and Find Full Text PDFBiol Imaging
November 2024
Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France.
We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators.
View Article and Find Full Text PDFNanophotonics
January 2024
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Optical skyrmions, which are topological quasi-particles with nontrivial electromagnetic textures, have garnered escalating research interest recently for their potential in diverse applications. In this paper, we present a method for generating tightly focused optical skyrmion and meron topologies formed by electric-field vectors under 4-focusing system, where both the topology types (including Néel-, Bloch-, intermediate- and anti-skyrmion/meron) and the normal direction of the two-dimensional topology projection plane can be tailored at will. By utilizing time-reversal techniques, we analytically derive the radiation pattern of a multiple concentric-ring array of dipoles (MCAD) to obtain the required illumination fields on the pupil planes of the two high numerical aperture lenses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!