To determine how much of the clinical variability in facioscapulohumeral muscular dystrophy type 1 (FSHD1) can be explained by the D4Z4 repeat array size, D4Z4 methylation and familial factors, we included 152 carriers of an FSHD1 allele (23 single cases, 129 familial cases from 37 families) and performed state-of-the-art genetic testing, extensive clinical evaluation and quantitative muscle MRI. Familial factors accounted for 50% of the variance in disease severity (FSHD clinical score). The explained variance by the D4Z4 repeat array size for disease severity was limited (approximately 10%), and varied per body region (facial muscles, upper and lower extremities approximately 30%, 15% and 3%, respectively). Unaffected gene carriers had longer repeat array sizes compared to symptomatic individuals (7.3 vs 6.0 units, P = 0.000) and slightly higher Delta1 methylation levels (D4Z4 methylation corrected for repeat size, 0.96 vs -2.46, P = 0.048). The D4Z4 repeat array size and D4Z4 methylation contribute to variability in disease severity and penetrance, but other disease modifying factors must be involved as well. The larger effect of the D4Z4 repeat array on facial muscle involvement suggests that these muscles are more sensitive to the influence of the FSHD1 locus itself, whereas leg muscle involvement seems highly dependent on modifying factors.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13446DOI Listing

Publication Analysis

Top Keywords

repeat array
20
d4z4 repeat
16
array size
12
d4z4 methylation
12
disease severity
12
facioscapulohumeral muscular
8
muscular dystrophy
8
dystrophy type
8
size d4z4
8
familial factors
8

Similar Publications

Characterization of the second type of tubuliform spidroin (TuSp1 variant 2) elucidates the essential role of cysteine within the repetitive domain in liquid-liquid phase separation-mediated silk formation and the mechanical properties of silk fibers.

Int J Biol Macromol

January 2025

Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:

Orb-weaver spiders utilize morphologically differentiated abdominal glands to produce up to seven types of silks throughout their life cycles. Tubuliform silk is unique as it serves to protect developing embryos and hatchlings. However, our current understanding of the relationship between structure and function of tubuliform silk protein remains limited.

View Article and Find Full Text PDF

WD repeat domain 77 protein (WDR77), a WD-40 domain-containing protein, is a crucial regulator of cellular pathways in cancer progression. While much of the past research on WDR77 has focused on its interaction with PRMT5 in histone methylation, WDR77's regulatory functions extend beyond this pathway, influencing diverse mechanisms such as mRNA translation, chromatin assembly, cell cycle regulation, and apoptosis. WDR77 is a key regulator of cell cycle progression, regulating the transition from the G1 phase.

View Article and Find Full Text PDF

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

The sex chromosomes contain complex, important genes impacting medical phenotypes, but differ from the autosomes in their ploidy and large repetitive regions. To enable technology developers along with research and clinical laboratories to evaluate variant detection on male sex chromosomes X and Y, we create a small variant benchmark set with 111,725 variants for the Genome in a Bottle HG002 reference material. We develop an active evaluation approach to demonstrate the benchmark set reliably identifies errors in challenging genomic regions and across short and long read callsets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!