Highly enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels.

Phys Chem Chem Phys

Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.

Published: October 2018

Enhancing nanoscale liquid flows remains an existing challenge in nanofluidics. Here we propose the generation of highly augmented thermoosmotic (TOS) liquid flows in soft nanochannels (or nanochannels functionalized by grafting with end-charged polyelectrolyte or PE brushes) by employing an axial temperature gradient. The TOS transport is a combination of the induced-electric-field electroosmotic (EOS) transport and a thermo-chemioosmotic (TCOS) transport with the latter resulting from an induced pressure gradient on account of the changes associated with the imposition of the axial temperature gradient. The end-charged brushes develop an electric double layer (EDL) localized at the charged, non-grafted brush end. Depending on the system parameters, this EDL localization massively augments the influence of the EOS body force and the induced pressure-gradient resulting in a TOS transport in soft nanochannels that can be more than one order of magnitude larger than that in brush-free nanochannels. Given the existing notion that the presence of the brushes invariably reduces the flow strength, this result of massive flow augmentation is extremely significant and non-trivial serving as a paradigm shift in the study of liquid transport in brush-grafted nanochannels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp04089cDOI Listing

Publication Analysis

Top Keywords

liquid flows
12
soft nanochannels
8
axial temperature
8
temperature gradient
8
tos transport
8
nanochannels
6
transport
5
highly enhanced
4
liquid
4
enhanced liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!