Recently, it has been reported that anti-cancer drug bexarotene can remarkably destroy amyloid beta (Aβ) plaques in mouse models suggesting therapeutic potential for Alzheimer's disease. However, the effect of bexarotene on clearance of plaques has not been seen in some mouse models. One of the possible mechanisms explaining this phenomenon is that bexarotene levels up expression of apolipoprotein 4 (ApoE4) leading to intracellular clearance of Aβ peptide. Therefore, an interesting question emerges of whether bexarotene can destroy Aβ plaques by direct interaction with them or by preventing production of Aβ peptides. In our previous work we have shown that bexarotene cannot clear amyloid aggregates due to their weak interaction using in silico and in vitro experiments. Here we explore the possibility of inhibiting Aβ production through bexarotene binding to β-secretase which can cleave Aβ peptides from amyloid precursor protein. Using the molecular mechanics-Poisson-Boltzmann surface area method and all-atom simulations we have shown that bexarotene has a very low binding affinity to β-secretase. This result has been also confirmed by our in vitro experiment implying that bexarotene cannot clear amyloid plaques through inhibition of Aβ production. We have also shown that bexarotene tightly binds to both peroxisome proliferator-activated receptor γ (PPAR-γ) and retinoid X receptors (RXRs). Thus, our result does not contradict the hypothesis that the reduction of Aβ plaques occurs due to bexarotene-induced overexpression of ApoE4.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp00049bDOI Listing

Publication Analysis

Top Keywords

amyloid beta
12
aβ plaques
12
bexarotene
10
plaques inhibition
8
silico vitro
8
8
plaques mouse
8
mouse models
8
aβ peptides
8
bexarotene clear
8

Similar Publications

Searching for new drugs to treat Alzheimer's disease dementia through multiple pathways.

World J Clin Cases

January 2025

Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China.

Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important.

View Article and Find Full Text PDF

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Individuals with one copy of APOE4 exhibit greater amyloid-beta (Aβ) deposition compared to noncarriers, an effect that is even more pronounced in APOE4 homozygotes. Interestingly, APOE4 carriers not only show more AD pathology but also experience more rapid cognitive decline, particularly in episodic memory.

View Article and Find Full Text PDF

Contributions of connectional pathways to shaping Alzheimer's disease pathologies.

Brain Commun

January 2025

Normandie Univ, UNICAEN, INSERM, U1237, PhIND 'Physiopathology and Imaging of Neurological Disorders', Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France.

Four important imaging biomarkers of Alzheimer's disease, namely grey matter atrophy, glucose hypometabolism and amyloid-β and tau deposition, follow stereotypical spatial distributions shaped by the brain network of structural and functional connections. In this case-control study, we combined several predictors reflecting various possible mechanisms of spreading through structural and functional pathways to predict the topography of the four biomarkers in amyloid-positive patients while controlling for the effect of spatial distance along the cortex. For each biomarker, we quantified the relative contribution of each predictor to the variance explained by the model.

View Article and Find Full Text PDF

Aβ40 Fibril Assembly on Human Cerebral Smooth Muscle Cells Impairs Cell Viability.

Biochemistry

January 2025

George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmacological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls.

View Article and Find Full Text PDF

Porous Materials for Early Diagnosis of Neurodegenerative Diseases.

Adv Healthc Mater

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!