Stepwise extraction of high-value chemicals from () and an economic feasibility study.

Biotechnol Rep (Amst)

Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand.

Published: December 2018

() consists of diverse high-value chemicals, such as phycocyanin, lipids/total fatty acids (TFA), and polysaccharides, which have been used for food, cosmetic and pharmacological applications. This study compared various stepwise extraction processes for these high-value chemicals. Considering the yield and properties of extracts, the most suitable extraction order was phycocyanin, lipid/TFA and polysaccharides. The yield of the main product (food-grade phycocyanin) was 8.66% of the biomass dry weight, whereas the yields of the subsequent lipid/TFA and polysaccharide coproducts were 3.55% and 0.72%, respectively. The economic analysis showed that producing phycocyanin alone was economically feasible, but producing coproducts (lipid/TFA and polysaccharides) was not. The production cost of phycocyanin was US$ 249.70 kg, which is an encouraging figure for large-scale production. Moreover, the phycocyanin content of materials utilized for extraction should not be lower than 15% of dry weight to ensure positive the net present value (NPV) of investment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134328PMC
http://dx.doi.org/10.1016/j.btre.2018.e00280DOI Listing

Publication Analysis

Top Keywords

high-value chemicals
12
stepwise extraction
8
lipid/tfa polysaccharides
8
dry weight
8
phycocyanin
6
extraction high-value
4
chemicals economic
4
economic feasibility
4
feasibility study
4
study consists
4

Similar Publications

The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.

View Article and Find Full Text PDF

Recent progress in the organoselenium-catalyzed difunctionalization of alkenes.

Org Biomol Chem

January 2025

School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.

Selenium-based catalysts have recently been utilized to facilitate a variety of new organic transformations, owing to their intrinsic advantages, including low cost, low toxicity, stability in both air and water, and strong compatibility with diverse functional groups. The difunctionalization of alkenes-the process of incorporating two functional groups onto a carbon-carbon double bond-has garnered particular interest within the chemical community owing to its significant applications in organic synthesis. Recently, organoselenium-catalyzed difunctionalization of alkenes has emerged as an ideal and powerful route to obtain high-value vicinal difunctionalized molecules.

View Article and Find Full Text PDF

Regulating Intermediate Adsorption and Promoting Charge Transfer of CoCr-LDHs by Ce Doping for Enhancing Electrooxidation of 5-Hydroxymethylfurfural.

Small

January 2025

Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.

View Article and Find Full Text PDF

Zero-Waste Polyanion and Prussian Blue Composites toward Practical Sodium-Ion Batteries.

Adv Mater

January 2025

Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and "zero-waste" mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process.

View Article and Find Full Text PDF

A photosynthesis-derived bionic system for sustainable biosynthesis.

Angew Chem Int Ed Engl

January 2025

Wuhan University, College of Chemistry and Molecular Sciences, Luojiashan Street, 430072, Wuhan, CHINA.

"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!