Virus-infected cells can regulate non-permissive bystander cells, but the precise mechanisms remain incompletely understood. Here we report that this process can be mediated by transfer of viral RNA-loaded exosomes shed from infected cells to myeloid-derived suppressor cells (MDSCs), which in turn regulate the differentiation and function of T cells during viral infection. Specifically, we demonstrated that patients with chronic hepatitis C virus (HCV) infection exhibited significant increases in T follicular regulatory (T) cells and decreases in T follicular helper (T) cells. These MDSC-mediated T-cell dysregulations resulted in an increased ratio of T/T and IL-10 production in peripheral blood. Specifically, co-culture of MDSCs derived from HCV patients with healthy peripheral blood mononuclear cells (PBMCs) induced expansion of T, whereas depletion of MDSCs from PBMCs of HCV patients reduced the increases in T frequency and IL-10 production, and promoted the differentiation of IFN-γ-producing T cells. Importantly, we found that exosomes isolated from the plasma of HCV patients and supernatant of HCV-infected hepatocytes could drive monocytic myeloid cell differentiation into MDSCs. These exosomes were enriched in tetraspanins, such as CD63 and CD81, and contained HCV RNA, but exosomes isolated from patients with antiviral treatment contained no HCV RNA and could not induce MDSC differentiation. Notably, these HCV RNA-containing exosomes (HCV-Exo) were sufficient to induce MDSCs. Furthermore, incubation of healthy myeloid cells with these HCV-Exo inhibited the expression of miR-124, whereas reconstitution of PBMCs with miR-124 abolished the effects of HCV-Exo on MDSC induction. Taken together, these results indicate that HCV-associated exosomes can transfer immunomodulatory viral RNA from infected cells to neighboring immune cells and trigger MDSC expansion, which subsequently promotes T differentiation and inhibits T function. This study reveals a previously unrecognized path that represents a novel mechanism of immune dysregulation during chronic viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131392PMC
http://dx.doi.org/10.1038/s41421-018-0052-zDOI Listing

Publication Analysis

Top Keywords

cells
12
hcv patients
12
hcv-associated exosomes
8
myeloid-derived suppressor
8
cell differentiation
8
differentiation function
8
infected cells
8
viral infection
8
il-10 production
8
peripheral blood
8

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!