Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be trained, it makes facial variation such as pose, illumination, and disguise difficult to be predicted. To overcome this problem, this paper proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and conveniently. Besides, it can generate samples such as disguise, expression, and mixed variation. Second, it uses transfer learning and introduces a well-trained deep convolutional neural network (DCNN) model and then selects some expanding samples to fine-tune the DCNN model. Third, the fine-tuned model is used to implement experiment. Experimental results on AR face database, Extend Yale B face database, FERET face database, and LFW database demonstrate that TDL achieves the state-of-the-art performance in SSPP FR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126063 | PMC |
http://dx.doi.org/10.1155/2018/3803627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!