Objective: The current study investigated the additive effect of oral lead (Pb) exposure and dietary iron (Fe) deficiency on intestinal lactobacilli, E. coli, and yeast in SD rats.
Methods: Weanling rats were fed on control diet (CD) or iron deficient diet (ID) for 4 weeks, followed by oral Pb exposure for another 4 weeks. Lead exposure was withdrawn for 2 weeks, and then resumed after 2 weeks. Blood samples were collected to determine haemoglobin (Hb), serum iron, blood Pb and δ-Aminolevulenic acid dehydratase (ALAD) activity. Fecal samples were collected to enumerate the lactobacilli, E. coli and yeast population on selective agar media and determine Pb levels.
Results: Hb and serum Fe levels decreased significantly in iron deficient rats. Pb exposed rats had a significant increase in blood Pb levels and decreased ALAD activity. The lactobacilli population was significantly decreased (p<0.05) in ID rats compared to the CD group. Further, a significant decrease in the lactobacilli population was observed in Pb exposed rats irrespective of the dietary regimen. Upon withdrawal of Pb exposure, lactobacilli increased significantly in both the CD+Pb and ID+Pb groups, whereas re-exposure to Pb decreased lactobacilli population. The E. coli and yeast populations were inconsistent among both the ID and Pb exposed rats compared to controls. Fecal Pb levels increased significantly in Pb exposed rats irrespective of diet.
Conclusion: An additive effect of dietary Fe deficiency and oral Pb exposure resulted in greater reductions in the intestinal lactobacilli population compared to either treatment alone. In addition, transient withdrawal of Pb exposure led to improved lactobacilli population irrespective of Fe status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281633 | PMC |
http://dx.doi.org/10.1539/joh.2017-0267-OA | DOI Listing |
Curr Opin Allergy Clin Immunol
January 2025
Department of Pulmonology, Allergy and Thoracic Oncology, University Hospital of Montpellier, Montpellier, France.
Purpose Of Review: Climate change influences working conditions in various ways, affecting employee health and safety across different sectors. Climatic factors like rising temperatures, increased UV radiation, and more frequent extreme weather events pose risks to in both indoor and outdoor workers. Allergic diseases of the respiratory tract and the skin may emerge due to climate change.
View Article and Find Full Text PDFBackground: Several modifiable risk factors for dementia and related neurodegenerative diseases have been identified including education level, socio-economic status, and environmental exposures - however, how these population-level risks relate to individual risk remains elusive. To address this, we assess over 450 potential risk factors in one deeply clinically and demographically phenotyped cohort using random forest classifiers to determine predictive markers of poor cognitive function. This study aims to understand early risk factors for dementia by identifying predictors of poor cognitive performance amongst a comprehensive battery of imaging, blood, atmospheric pollutant and socio-economic measures.
View Article and Find Full Text PDFFew of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment.
View Article and Find Full Text PDFFront Pediatr
January 2025
Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China.
Background: Previous research has demonstrated that exposure to individual heavy metals elevates the incidence rate of congenital heart defects (CHDs). However, there is a paucity of data concerning the relationship between combined exposure to multiple heavy metals and the occurrence of CHDs. This study seeks to investigate the association between combined heavy metal exposure in pregnant women and the incidence of CHDs in their offspring in Lanzhou, China.
View Article and Find Full Text PDFGlob Epidemiol
June 2025
Business Analytics (BANA) Program, Business School, University of Colorado, 1475 Lawrence St. Denver, CO 80217-3364, USA.
AI-assisted data analysis can help risk analysts better understand exposure-response relationships by making it relatively easy to apply advanced statistical and machine learning methods, check their assumptions, and interpret their results. This paper demonstrates the potential of large language models (LLMs), such as ChatGPT, to facilitate statistical analyses, including survival data analyses, for health risk assessments. Through AI-guided analyses using relatively recent and advanced methods such as Individual Conditional Expectation (ICE) plots using Random Survival Forests and Heterogeneous Treatment Effects (HTEs) estimated using Causal Survival Forests, population-level exposure-response functions can be disaggregated into individual-level exposure-response functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!