Theoretical investigation of multiferroic metal-organic framework magnet [CHNH][Co(HCOO)]: Green's function method.

J Phys Condens Matter

School of Physics and National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China.

Published: October 2018

For the first presented magnetic ordering-induced multiferroics with a metal-organic framework (MOF) of formula [CHNH][Co(HCOO)], we theoretically investigate its multiple ferroics. It is found that Dzyaloshinskii-Moriya interaction is a main cause that leads to non-zero magnetization, and electric polarization, and the induced electric polarization can be regulated by magnetic fields. As an assistant mechanism, magnon-magnon interaction and quantum fluctuation play an important role on ferroelectrics and magnetism. Our methods are based on the double-time Green's function and Holstein-Primakoff transformation. Theoretical results can be compared with experiments, though there are some discrepancies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aadc80DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
green's function
8
electric polarization
8
theoretical investigation
4
investigation multiferroic
4
multiferroic metal-organic
4
framework magnet
4
magnet [chnh][cohcoo]
4
[chnh][cohcoo] green's
4
function method
4

Similar Publications

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

Entropy engineering activation of UiO-66 for boosting catalytic transfer hydrogenation.

Nat Commun

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.

High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.

View Article and Find Full Text PDF

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

Structures and properties of α-amylase and glucoamylase immobilized by ZIF-8 via one-pot preparation.

Enzyme Microb Technol

December 2024

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.

The immobilization of α-amylase and glucoamylase using a metal-organic framework (enzyme@ZIF-8) was prepared in situ through a one-pot method. The morphology, crystal structure, and molecular characteristics of the free enzyme and enzyme@ZIF-8 were characterized. The enzyme@ZIF-8 exhibited the rhombic dodecahedron morphology, with a decrease in particle size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!