PTBP1 acts as a dominant repressor of the aberrant tissue-specific splicing of ISCU in hereditary myopathy with lactic acidosis.

Mol Genet Genomic Med

Unit for Medical and Clinical Genetics, Department of Medical Biosciences, Umeå University, Umeå, Sweden.

Published: November 2018

Background: Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive disease caused by an intron mutation in the iron-sulfur cluster assembly (ISCU) gene. The mutation results in aberrant splicing, where part of the intron is retained in the final mRNA transcript, giving rise to a truncated nonfunctional ISCU protein. Using an ISCU mini-gene system, we have previously shown that PTBP1 can act as a repressor of the mis-splicing of ISCU, where overexpression of PTBP1 resulted in a decrease of the incorrect splicing. In this study, we wanted to, in more detail, analyze the role of PTBP1 in the regulation of endogenous ISCU mis-splicing.

Methods: Overexpression and knockdown of PTBP1 was performed in myoblasts from two HML patients and a healthy control. Quantification of ISCU mis-splicing was done by qRTPCR. Biotinylated ISCU RNA, representing wildtype and mutant intron sequence, was used in a pull-down assay with nuclear extracts from myoblasts. Levels of PTBP1 in human cell lines and mice tissues were analyzed by qRTPCR and western blot.

Results: PTBP1 overexpression in HML patient myoblasts resulted in a substantial decrease of ISCU mis-splicing while knockdown of PTBP1 resulted in a drastic increase. The effect could be observed in both patient and control myoblasts. We could also show that PTBP1 interacts with both the mutant and wild-type ISCU intron sequence, but with a higher affinity to the mutant sequence. Furthermore, low levels of PTBP1 among examined mouse tissues correlated with high levels of incorrect splicing of ISCU.

Conclusion: Our results show that PTBP1 acts as a dominant repressor of ISCU mis-splicing. We also show an inverse correlation between the levels of PTBP1 and ISCU mis-splicing, suggesting that the high level of mis-splicing in the skeletal muscle is primarily due to the low levels of PTBP1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305642PMC
http://dx.doi.org/10.1002/mgg3.413DOI Listing

Publication Analysis

Top Keywords

iscu mis-splicing
16
levels ptbp1
16
ptbp1
13
iscu
12
ptbp1 acts
8
acts dominant
8
dominant repressor
8
hereditary myopathy
8
myopathy lactic
8
lactic acidosis
8

Similar Publications

Background: Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive disease caused by an intron mutation in the iron-sulfur cluster assembly (ISCU) gene. The mutation results in aberrant splicing, where part of the intron is retained in the final mRNA transcript, giving rise to a truncated nonfunctional ISCU protein. Using an ISCU mini-gene system, we have previously shown that PTBP1 can act as a repressor of the mis-splicing of ISCU, where overexpression of PTBP1 resulted in a decrease of the incorrect splicing.

View Article and Find Full Text PDF

Background: ISCU myopathy is a disease caused by muscle-specific deficiency of the Fe-S cluster scaffold protein ISCU.

Results: MyoD expression enhanced ISCU mRNA mis-splicing, and oxidative stress exacerbated ISCU depletion in patient cells.

Conclusion: ISCU protein deficiency in patients results from muscle-specific mis-splicing as well as oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!