Variation in environmental conditions can result in disparate associations between hosts and microbial symbionts. As such, it is imperative to evaluate how environmental variables (e.g., habitat quality) can influence host-associated microbiome composition. Within wildlife conservation programs, captive conditions can negatively influence the establishment and maintenance of "wild-type" microbiotas within a host. Alternative microbial communities can result in the proliferation of disease among captive stock or upon reintroduction. Hellbenders (Cryptobranchus alleganiensis) are a threatened salamander for which extensive captive management is currently employed. Using metabarcoding, we characterized the skin microbiota of wild and captive hellbenders from two subspecies in the state of Missouri, the eastern (C. a. alleganiensis) and the Ozark hellbender (C. a. bishopi). Both subspecies in our study included wild adults and captive juveniles that were collected from the wild as eggs. Our objectives were to investigate differences in the skin microbial communities' richness/diversity, composition, and functional profiles of microbes between wild and captive individuals. Captive eastern hellbenders possessed richer communities than wild cohorts, whereas the opposite pattern was observed within the Ozark subspecies. We found significant microbial community structure between wild and captive populations of both subspecies. Microbiota structure translated into differences in the predicted metagenome of wild and captive individuals as well. As such, we can expect captive hellbenders to experience alternative microbial structure and function upon reintroduction into the wild. Our study provides a baseline for the effect of captivity on the skin microbial communities of hellbenders, and highlights the need to incorporate microbiota management in current captive-rearing programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-018-1258-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!