Inorganic Polyphosphate and Cancer.

Biochemistry (Mosc)

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.

Published: August 2018

This review presents data on the relationship between inorganic polyphosphate metabolism and carcinogenesis including participation of polyphosphates in the regulation of activity of mTOR and other proteins involved in carcinogenesis, the role of h-prune protein (human polyphosphatase) in cell migration and metastasis formation, the prospects for using polyphosphates and inhibitors of polyphosphate metabolism enzymes as agents for controlling cell proliferation and migration.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297918080072DOI Listing

Publication Analysis

Top Keywords

inorganic polyphosphate
8
polyphosphate metabolism
8
polyphosphate cancer
4
cancer review
4
review presents
4
presents data
4
data relationship
4
relationship inorganic
4
metabolism carcinogenesis
4
carcinogenesis including
4

Similar Publications

Inorganic polyphosphate (polyP) is a polymer that consists of a series of orthophosphates connected by high-energy phosphoanhydride bonds, like those found in ATP. In mammalian mitochondria, polyP has been linked to the activation of the mitochondrial permeability transition pore (mPTP). However, the details of this process are not completely understood.

View Article and Find Full Text PDF

Lignosulfonate-based deflocculant and its derivatives for water-based drilling mud: A review.

Int J Biol Macromol

January 2025

Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria.

Chromium-based lignosulfonate (CrLS) deflocculants that are commonly used in water-based drilling muds (WBDMs) to deflocculate bentonites under high temperature (HT), high-pressure (HP), and high-salinity (HS) oil well drilling conditions have been found to contain heavy metals such as chromium, which is toxic and degrades rapidly. However, different ways of addressing this issue have been proffered, including the use of natural polymers such as starch, cellulose, or anionic inorganic agents such as sodium polyphosphates with little or no impact. Other lignosulfonate (LS)-based deflocculants, like sodium-based LS and bio-based LS, have shown a number of benefits, such as being better for the environment, more soluble and evenly distributed in WBDMs, more resistant to salt contamination, easily biodegradable, safe, and able to go through different chemical changes.

View Article and Find Full Text PDF

Multi-omics reveals mechanism of hydroxylamine-enhanced ultimate nitrogen removal in pilot-scale anaerobic/aerobic/anoxic system.

Water Res

January 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address:

Hydroxylamine (HA) dosing is an effective strategy for promoting partial nitrification (PN); however, its impact on endogenous denitrification remains underexplored. In this study, long-term continuous HA dosing (1.4 mg/L) was introduced for over 110 days in a pilot-scale anaerobic/aerobic/anoxic (AOA) system treating municipal wastewater (66.

View Article and Find Full Text PDF

Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in .

Microorganisms

December 2024

Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile.

Polyphosphates are biopolymers composed of phosphate monomers linked by high-energy phosphoanhydride bonds. They are present across all life domains, serving as a source of energy, metal chelators, and playing a crucial role in stress defense. In , polyphosphates also function as inorganic molecular chaperones.

View Article and Find Full Text PDF

Secondary transport mechanisms in amino acid fed enhanced biological phosphorus removal.

Chemosphere

January 2025

Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, NM, 87131, United States. Electronic address:

Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!