Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silicon oxide substrates underwent gas-phase functionalization with various aminosilanes, and the resulting surfaces were evaluated for their suitability as a solid support for solid phase peptide synthesis (SPPS). APTES (3-aminopropyltriethoxysilane), APDEMS (3-aminopropyldiethoxymethylsilane), and APDIPES (3-aminopropyldiisopropylethoxysilane) were individually applied to thermal oxide-terminated silicon substrates via gas-phase deposition. Coated surfaces were characterized by spectroscopic ellipsometry (SE), contact angle goniometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and spectrophotometry. Model oligopeptides with 16 residues were synthesized on the amino surfaces, and the chemical stabilities of the resulting surfaces were evaluated against a stringent side chain deprotection (SCD) step, which contained trifluoroacetic acid (TFA) and trifluoromethanesulfonic acid (TFMSA). Functionalized surface thickness loss during SCD was most acute for APDIPES and the observed relative stability order was APTES > APDEMS > APDIPES. Amino surfaces were evaluated for compatibility with stepwise peptide synthesis where complete deprotection and coupling cycles are paramount. Model trimer syntheses indicated that routine capping of unreacted amines with acetic anhydride significantly increased purity as measured by MALDI-MS. An inverse correlation between the amine loading density and peptide purity was observed. In general, peptide purity was highest for the lowest amine density APDIPES surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b01298 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!