Inhibition of Prostate Cancer DU-145 Cells Proliferation by Oligopeptide (YVPGP) via PI3K/AKT/mTOR Signaling Pathway.

Mar Drugs

Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.

Published: September 2018

We investigated the antitumor mechanism of oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165336PMC
http://dx.doi.org/10.3390/md16090325DOI Listing

Publication Analysis

Top Keywords

du-145 cells
24
pi3k/akt/mtor signaling
20
signaling pathway
20
prostate cancer
12
antitumor mechanism
12
aap-h treatment
12
cancer du-145
8
oligopeptide yvpgp
8
aap-h
8
indicated aap-h
8

Similar Publications

Objective: This study investigated the potential anticancer properties of Myo-inositol on the DU-145 prostate cancer cell line.

Methods: The DU-145 cells have been treated to different doses of Myo-inositol in order to ascertain the half-maximal inhibitory concentration (IC50) using the trypan blue exclusion assay. The impact of Myo-inositol on proteomic profiles was evaluated using 2D gel electrophoresis and liquid chromatography-mass spectrometry (LC-MS).

View Article and Find Full Text PDF

Lack of canonical activities of connexins in highly aggressive human prostate cancer cells.

Biol Res

December 2024

Centro de Biología Celular y Biomedicina CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Providencia., Santiago, 7510156, Chile.

Connexins (Cxs) have the ability to form channels that allow the exchange of ions/metabolites between adjacent cells (gap junction channels, GJC) or between the intra- and extra-cellular compartments (hemichannels, HC). Cxs were initially classified as tumor suppressors. However, more recently, it has been shown that Cxs exert anti- and pro-tumorigenic effects depending on the cell and tissue context.

View Article and Find Full Text PDF

Unsymmetrical Bisacridines' Interactions with ABC Transporters and Their Cellular Impact on Colon LS 174T and Prostate DU 145 Cancer Cells.

Molecules

November 2024

Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.

Multidrug resistance (MDR) is a process that constitutes a significant obstacle to effective anticancer therapy. Here, we examined whether unsymmetrical bisacridines (UAs) are substrates for ABC transporters and can influence their expression in human colon LS 174T and prostate DU 145 cancer cells. Moreover, we investigated the cytotoxicity and the cellular response induced by UAs in these cells.

View Article and Find Full Text PDF

anti-prostate cancer efficacy and phytochemical composition of the dichloromethane and ethyl acetate leaf extracts of (sweet).

Front Pharmacol

November 2024

Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya.

Background: Prostate cancer is a significant global health concern, particularly among ageing male populations, with a disproportionately higher burden in sub-Saharan Africa. Conventional treatments, though effective, are costly and cause devastating side effects which limit their clinical benefits. Hence, this study evaluated the antiprostate cancer properties and secondary metabolites of dichloromethane and ethyl acetate lead extracts of to explore safer and efficacious natural alternatives based on ethnomedicinal claims.

View Article and Find Full Text PDF

Background: The antioxidant and anticancer potential of natural compounds, particularly from medicinal plants, is increasingly being explored as alternatives to synthetic antioxidants and chemotherapeutics. Boascia coriacea (Pax) has been traditionally used for treating various ailments, including oxidative stress-related diseases and prostate cancer. However, there is a paucity of empirical evidence to validate the ethnomedicinal claims, hence this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!