Geogenic arsenic (As) contamination in Bengal Delta Plain is a growing environmental and research concern. Cultivation of staple crops like paddy on these contaminated fields is one of the major routes for human dietary exposure. The present study investigates changes of arsenic concentrations in paddy plant parts, root soil and surface soil throughout the various phases of pre-monsoon (boro) cultivation. Arsenic uptake property of paddy plants collected from 10 fields was found to be dependent on the variety of paddy plant (like Minikit, Jaya) rather than arsenic levels in groundwater (0.074-0.301 mg/l) or soil (25.3-60 mg/kg). Arsenic is translocated from root to aerial parts in descending order. Leaf, stem, root, root soil and surface soil showed a similar trend in their change of arsenic concentration throughout the cultivation period. Arsenic concentration was highest in vegetative phase; sharply declined in reproductive phase; followed by moderate increase in ripening phase. The young root tissues in vegetative (primary) phase could uptake arsenic at a much faster rate than the older tissues in later phases. With the growth of the plant, higher concentrations of iron in root soil in the reproductive phase confirmed the formation of iron plaques on the surface of the root, which sequester arsenic and prevented its uptake by plants. Finally, co-precipitation of arsenic with iron released from crystallized iron plaques results in loosening of the iron plaques from root surface. Thus, soil arsenic concentration increases in the final phase of cultivation which in turn contributes to increased concentration in plant parts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.07.041DOI Listing

Publication Analysis

Top Keywords

arsenic
12
root soil
12
surface soil
12
arsenic concentration
12
iron plaques
12
paddy plants
8
phases pre-monsoon
8
paddy plant
8
plant parts
8
root
8

Similar Publications

Background: Hearing loss (HL) is a common sensory disorder in humans. Studies on the relationship between arsenic, which is a highly toxic and widely distributed heavy metal with a health risk to humans, and hearing status in humans are contradictory and mostly focused on people living in arsenic-contaminated areas. This study investigated the association between urinary arsenic levels and hearing threshold shifts in the general population in the United States.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple Sclerosis (MS) patients show significantly higher concentrations of heavy metals like arsenic, nickel, manganese, and zinc in their stool compared to healthy individuals, while levels of iron, lead, titanium, and tin are notably lower.
  • The study also reveals alterations in the gut microbiome of MS patients, with increased abundance of certain bacterial families indicative of potential changes associated with the disease.
  • The research highlights a novel approach by combining heavy metal measurement and gut microbiome analysis, suggesting new insights into the disease's pathogenesis and possible therapeutic strategies.
View Article and Find Full Text PDF

Sources analysis and risk assessment of heavy metals in soil in a polymetallic mining area in southeastern Hubei based on Monte Carlo simulation.

Ecotoxicol Environ Saf

December 2024

Chinese Academy of Geological Sciences, China Geology Survey, Ministry of Natural Resources, Beijing 100037, China.

This study investigates the pollution characteristics, spatial patterns, causes, and ecological risks of heavy metals in the soils of the southeastern Hubei polymetallic mining areas, specifically the Jilongshan (JLS) and Tonglushan (TLS) regions, located in the middle and lower reaches of the Yangtze River. The main findings are as follows: (1) Among the heavy metals present in the soil, copper (Cu) has the highest average concentration at 278.54 mg/kg, followed by zinc (Zn) at 161.

View Article and Find Full Text PDF

A Comprehensive Review of Arsenic-Induced Neurotoxicity: Exploring the Role of Glial Cell Pathways and Mechanisms.

Chemosphere

December 2024

Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells.

View Article and Find Full Text PDF

The use of nanoparticles is a promising ecofriendly strategy for mitigating both abiotic and biotic stresses. However, the physiological and defense response mechanisms of plants exposed to multiple stresses remain largely unexplored. Herein, we examined how foliar application of biogenic nanosilica (BNS) impacts rice plant growth, molecular defenses, and metabolic responses when subjected to arsenic (As) toxicity and infested by the insect .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!