An environment-friendly iodine and potassium co-doped g-CN (IKCN) photocatalyst was synthesized via the co-pyrolysis of urea and potassium iodate. Various characterization techniques were employed to evaluate the physical, thermal and chemical characteristics of the as-synthesized photocatalyst. Sulfamethoxazole (SMX) was used as a representative antibiotic pollutant. SMX removal by IK-CN photocatalysts exceeded 99% (∼23 times higher than that of pure g-CN) within 45 min of visible light irradiation. The kinetics of SMX removal was analyzed with respect to solution pH, photocatalyst dosage and initial SMX concentration. Experimental data was found to fit the pseudo-first order kinetics and the Langmuir-Hinshelwood kinetics. The reuse of the photocatalyst up to 3 consecutive photodegradation cycles gave a minimal decline in SMX removal while the structure and the crystallinity of the nanomaterials remained unchanged. Overall, morphology engineering of conventional bulk graphitic carbon nitride can produce highly efficient photocatalysts for the decontamination of antibiotics in the aqueous environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.07.109 | DOI Listing |
J Hazard Mater
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (NO) emission are unclarified, which could greatly offset the CO sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO-N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and NO emission originated from intracellular NO build-up.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Developing advanced heterogeneous catalysts through structural modifications effectively enhances the catalytic activity of non-homogeneous catalysts for removing emerging micropollutants (EMPs). In this study, MoTiCT@Co with Mo vacancies was synthesized using the Lewis molten salt method, which efficiently activates peroxymonosulfate (PMS) and continuously degrades EMPs in water. The abundant Mo vacancy structure in the material acts as an anchoring site for Co nanoparticles and a co-catalytic site for Fenton-like reactions, enabling PMS adsorption and activation.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain.
Nowadays, there is a growing interest in membrane modification processes to improve their characteristics and the effectiveness of their treatments and reduce the possible fouling. In this sense, in this work, a modification of an ultrafiltration membrane with three different materials has been carried out: reduced graphene oxide (rGO), chitosan and MgCl. For both the native and the modified membranes, a study has been carried out to remove the emerging contaminant sulfamethoxazole (SMX).
View Article and Find Full Text PDFEnviron Res
December 2024
School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China. Electronic address:
The technology to solve the problem of the efficient pollutant removal in peroxymonosulfate (PMS) activation was the ultimate goal. There was an urgent need to achieving higher catalytic activity and oxidation efficiency. Herein, we present a MgAl-based layered double hydroxide assembled as a 2D confined catalyst (MgAl-Co-LDH) with Co metal in chelated form (Co-EDTA) for highly efficient PMS activation degrading sulfamethoxazole (SMX).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!