Respect and admiration differentially activate the anterior temporal lobe.

Neurosci Res

Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; RIKEN Center for Brain Science, Saitama, Japan.

Published: July 2019

Admiration and respect are positive social emotions often experienced when recognizing excellent behavior in another person. Although both strongly rely on appraisal of behavior, admiration focuses on the admirable behavior of a person, while respect focuses on the person as a whole. The evaluation and interpretation of the social behavior of another person are dependent on semantic memory. Social semantic knowledge is represented in the anterior temporal lobe (ATL), and ATL activity is modulated by conceptual details of semantic knowledge. As respect requires evaluation of not only excellent behavior but also of the person as a whole, we hypothesized that the ATL is differentially activated by admiration and respect. To test our hypothesis, we conducted functional magnetic resonance imaging experiments. We presented participants with vignettes describing admirable behavior of fictitious characters and asked them to imagine and report how they would normally feel when encountering the situation described in the vignettes, i.e., admiration or respect and its intensity. A part of the left ATL was more strongly modulated by the intensity of respect than of admiration. Although admiration and respect are often considered to be closely related, our results indicate that the neural substrates underlying these emotions are different.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2018.09.003DOI Listing

Publication Analysis

Top Keywords

admiration respect
16
behavior person
16
respect
8
respect admiration
8
anterior temporal
8
temporal lobe
8
excellent behavior
8
admirable behavior
8
semantic knowledge
8
admiration
6

Similar Publications

The electrocatalytic oxygen and hydrogen evolution reactions (OER and HER) are key processes used in energy storage and conversion. We have developed a highly efficient MnCoO nanostructure anchored with functionalized carbon black (MnCoO/f-CB), which has been characterized by XRD, FT-IR, Raman spectra, FE-SEM, and HR-TEM analyses as robust bifunctional electrocatalysts for both HER and OER. At a characteristic 10 mA cm current density, the MnCoO/f-CB composite ECs exhibit low overpotentials of 330 mV for OER and 360 mV for HER, respectively.

View Article and Find Full Text PDF

In this study 1-vinyl-3-alkyl imidazolium-based ionic liquid monomers (ILs) with different alkyl chain lengths {R = hexyl (A), octyl (B) and decyl (C)} have been synthesized for antibacterial applications. The prepared ILs have been characterized using UV, FT-IR and NMR spectroscopy. The antibacterial activities of the synthesized ILs against Staphylococcus aureus (S.

View Article and Find Full Text PDF

The vicious cycle of status insecurity.

J Pers Soc Psychol

December 2024

Department of Marketing, Kellogg School of Management, Northwestern University.

The current research presents and tests a new model: The Vicious Cycle of Status Insecurity. We define status insecurity as doubting whether one is respected and admired by others. Status insecurity leads people to view status as a limited and zero-sum resource, where a boost in the status of one individual inherently decreases that of other individuals.

View Article and Find Full Text PDF

For the first time, a novel simple label-free electrochemical immunosensor was fabricated for sensitive detection of the coat protein of beet necrotic yellow vein virus (CP-BNYVV) as the causal agent of Rhizomania disease in sugar beet. To boost the amplification of the electrochemical signal, gold nanoparticles-reduced graphene oxide (AuNPs-rGO) nanocomposite was employed to modify the glassy carbon electrode. Anti-BNYVV polyclonal was immobilized onto a modified electrode by applying a thiol linker via a self-assembly monolayer (SAM) and activating the functionalized surface using (3-aminopropyl triethoxysilane) and glutaraldehyde.

View Article and Find Full Text PDF

The pyruvate dehydrogenase kinase-3 (PDK3) plays an important role in the regulation of a variety of cancers, including lung, by inhibiting the pyruvate dehydrogenase complex (PDC), shifting energy production towards glycolysis necessary for cancer metabolism. In this study, we aimed to identify potential PDK3 inhibitors using a computer-based drug design approach. Virtual screening of the FDA-approved library of 3839 compounds was carried out, from which Bagrosin and Dehydrocholic acid appeared best due to their strong binding affinity, specific interactions, and potential biological characteristics, and thus were selected for further investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!