Amorphous Fe(II)-Fe(III) hydroxy complex with flower-like nanostructure was synthesized by ferric reduction using a microwave-assisted ethylene glycol approach. Here we investigated the correlation between its chemical composition and the removal rate for Congo red (CR) dye. The results showed that the amorphous complex had similar reduction and anion exchange capacities to the green rust. Due to the synergistic effect of attractive electrostatic interaction, anion exchange, ferrous redox and hydrogen bonding, the Fe(II)-Fe(III) hydroxy complex exhibited strong adsorption of CR with an estimated adsorption capacity up to 513 mg g. In contrast, the Fe(III) hydroxy complex had an adsorption capacity of 296 mg g because of the predominant mechanism based on the electrostatic interaction. The present study provides a facile synthesis of nanostructured iron hydroxy complex, with superior performance in adsorbing CR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2018.303 | DOI Listing |
J Phys Chem B
January 2025
UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus of Mumbai University, Santacruz (E), Mumbai 400098, India.
Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.
View Article and Find Full Text PDFChemistry
January 2025
Albert-Ludwigs Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, 79104, Freiburg, GERMANY.
The bonding situation in [Fp-P4][Al(ORF)4] (1) (Fp = (CO)2CpFe, RF = C(CF3)3) gives rise to an Umpolung of the P4 fragment, which should make it accessible for nucleophiles. To investigate this projected reactivity, the complex was combined with a series of hydroxy-nucleophiles - that all do not react with free P4 - leading to a variety of P1 building blocks. With excess of R-OH (R = Me, Et, Ph), the thermodynamically more stable complex salts [Fp-P(H)x(OR)3-x)][Al(ORF)4] (x = 2,1,0) (2b‑2d) are formed and show that the phosphonium type pathway is accessible.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
The chalcone derivatives with hydroxy group () have been examined using low-temperature fluorescence spectroscopy. The study aimed to freeze the intramolecular charge transfer (ICT) motion in order to reveal the potential hidden transition(s) that are difficult to observe at room temperature. Although chalcone revealed one emission peak at ~667 nm at room temperature, it exhibited two emission peaks (λ = 580 and 636 nm) in EtOH at liquid N temperatures (77 K).
View Article and Find Full Text PDFMolecules
December 2024
Department of Inorganic & Analytical Chemistry, Faculty of Science & Technology, University of Debrecen, H-4032 Debrecen, Hungary.
Heterobimetallic complexes of an ambidentate deferiprone derivative, 3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one (PyPropHpH), incorporating an octahedral [Co(4N)] (4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa)) and a half-sandwich type [(η--cym)Ru] (-cym = -cymene) entity have been synthesized and characterized by various analytical techniques. The reaction between PyPropHpH and [Co(4N)Cl]Cl resulted in the exclusive (O,O) coordination of the ligand to Co(III) yielding [Co(tren)PyPropHp](PF) () and [Co(tpa)PyPropHp](PF) (). This binding mode was further supported by the molecular structure of [Co(tpa)PyPropHp](ClO)(OH)·6HO () and [Co(tren)PyPropHpH]Cl(PF)·2HO·CHOH (), respectively, obtained via the slow evaporation of the appropriate reaction mixtures and analyzed using X-ray crystallography.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland.
Direct lithium extraction from unconventional resources requires the development of effective adsorbents. Crown ether-containing materials have been reported as promising structures in terms of lithium selectivity, but data on adsorption in real, highly saline brines are scarce. Crown ether-grafted graphene oxides were synthesized using 2-hydroxymethyl-12-crown-4, hydroxy-dibenzo-14-crown-4 and epichlorohydrin as a source of anchoring groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!