Improved adsorption of Congo red by nanostructured flower-like Fe(II)-Fe(III) hydroxy complex.

Water Sci Technol

School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China E-mail:

Published: September 2018

AI Article Synopsis

  • A flower-like nanostructured Fe(II)-Fe(III) hydroxy complex was created using a microwave-assisted method, showing promising properties for dye removal.
  • The complex demonstrated strong adsorption of Congo red (CR) dye, achieving a remarkable capacity of 513 mg/g due to a combination of electrostatic interactions and other factors.
  • In comparison, a Fe(III) hydroxy complex showed lower dye adsorption (296 mg/g) mainly through electrostatic interaction, indicating the unique advantages of the amorphous Fe(II)-Fe(III) complex.

Article Abstract

Amorphous Fe(II)-Fe(III) hydroxy complex with flower-like nanostructure was synthesized by ferric reduction using a microwave-assisted ethylene glycol approach. Here we investigated the correlation between its chemical composition and the removal rate for Congo red (CR) dye. The results showed that the amorphous complex had similar reduction and anion exchange capacities to the green rust. Due to the synergistic effect of attractive electrostatic interaction, anion exchange, ferrous redox and hydrogen bonding, the Fe(II)-Fe(III) hydroxy complex exhibited strong adsorption of CR with an estimated adsorption capacity up to 513 mg g. In contrast, the Fe(III) hydroxy complex had an adsorption capacity of 296 mg g because of the predominant mechanism based on the electrostatic interaction. The present study provides a facile synthesis of nanostructured iron hydroxy complex, with superior performance in adsorbing CR.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2018.303DOI Listing

Publication Analysis

Top Keywords

hydroxy complex
20
feii-feiii hydroxy
12
congo red
8
anion exchange
8
electrostatic interaction
8
adsorption capacity
8
complex
6
hydroxy
5
improved adsorption
4
adsorption congo
4

Similar Publications

Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.

View Article and Find Full Text PDF

The bonding situation in [Fp-P4][Al(ORF)4] (1) (Fp = (CO)2CpFe, RF = C(CF3)3) gives rise to an Umpolung of the P4 fragment, which should make it accessible for nucleophiles. To investigate this projected reactivity, the complex was combined with a series of hydroxy-nucleophiles - that all do not react with free P4 - leading to a variety of P1 building blocks. With excess of R-OH (R = Me, Et, Ph), the thermodynamically more stable complex salts [Fp-P(H)x(OR)3-x)][Al(ORF)4] (x = 2,1,0) (2b‑2d) are formed and show that the phosphonium type pathway is accessible.

View Article and Find Full Text PDF

The chalcone derivatives with hydroxy group () have been examined using low-temperature fluorescence spectroscopy. The study aimed to freeze the intramolecular charge transfer (ICT) motion in order to reveal the potential hidden transition(s) that are difficult to observe at room temperature. Although chalcone revealed one emission peak at ~667 nm at room temperature, it exhibited two emission peaks (λ = 580 and 636 nm) in EtOH at liquid N temperatures (77 K).

View Article and Find Full Text PDF

Heterobimetallic complexes of an ambidentate deferiprone derivative, 3-hydroxy-2-methyl-1-(3-((pyridin-2-ylmethyl)amino)propyl)pyridin-4(1H)-one (PyPropHpH), incorporating an octahedral [Co(4N)] (4N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa)) and a half-sandwich type [(η--cym)Ru] (-cym = -cymene) entity have been synthesized and characterized by various analytical techniques. The reaction between PyPropHpH and [Co(4N)Cl]Cl resulted in the exclusive (O,O) coordination of the ligand to Co(III) yielding [Co(tren)PyPropHp](PF) () and [Co(tpa)PyPropHp](PF) (). This binding mode was further supported by the molecular structure of [Co(tpa)PyPropHp](ClO)(OH)·6HO () and [Co(tren)PyPropHpH]Cl(PF)·2HO·CHOH (), respectively, obtained via the slow evaporation of the appropriate reaction mixtures and analyzed using X-ray crystallography.

View Article and Find Full Text PDF

Direct lithium extraction from unconventional resources requires the development of effective adsorbents. Crown ether-containing materials have been reported as promising structures in terms of lithium selectivity, but data on adsorption in real, highly saline brines are scarce. Crown ether-grafted graphene oxides were synthesized using 2-hydroxymethyl-12-crown-4, hydroxy-dibenzo-14-crown-4 and epichlorohydrin as a source of anchoring groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!