Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiovascular diseases, the leading cause of death in the world, are often associated with the dysfunction of the left ventricle. Even if, in clinical practice, the myocardial function is often assessed through visual wall motion scoring on B-mode images, quantitative techniques have been introduced, e.g., ultrasound tissue Doppler imaging (TDI). However, this technique suffers from the limited frame rate of currently available imaging techniques that needs to be balanced with the field of view. High-frame-rate (HFR) cardiac imaging has been recently tested off-line by simultaneously transmitting multiple focused beams into different directions and acquiring raw channel data into a PC. Several image lines were then reconstructed from the echoes of each transmission (TX) event. The same approach has been used to increase the TDI frame rate without restricting the field of view. This paper demonstrates the real-time feasibility of multiline TX and acquisition methods for both HFR cardiac B-mode and TDI. These approaches have been implemented on the ULA-OP 256 research scanner, by taking care that the related resources were optimally exploited for these new applications. The obtainable performance in terms of image quality and frame rate has also been investigated. Experiments performed with a 128-element phased array probe show, for the first time, that real-time B-mode imaging is feasible at up to 1150 Hz without significant reduction in image quality or field of view. The implementation of a real-time TDI algorithm allowed obtaining TDI images with a frame rate of 288 Hz for a 90°-wide field of view. Finally, in vivo examples demonstrate the feasibility and the suitability of the method in clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2018.2869473 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!