The iron(III)-polypyridyl complex and its derivatives showed sufficient oxidizing potential to act as a one-electron oxidant, producing radical cations from olefins and promoting the efficient radical cation [2 + 2] and [2 + 4] cycloaddition reactions. Subsequent chain propagation afforded trisubstituted cyclobutane or cyclohexene derivatives, and this facile route enables the replacement of rare metals with sustainable, green, and inexpensive iron in radical cation cycloadditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.8b02541 | DOI Listing |
Org Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Queensland University of Technology, School of Chemistry and Physics, 2 George Street, 4000, Brisbane, AUSTRALIA.
We demonstrate that single-chain nanoparticles (SCNPs) - compact covalently folded single polymer chains - can increase photocatalytic performance of an embedded catalytic center, compared to the comparable catalytic system in free solution. In particular, we demonstrate that the degree of compaction allows to finely tailor the catalytic activity, thus evidencing that molecular confinement is a key factor in controlling photocatalysis. Specifically, we decorate a linear parent polymer with both photoreactive chalcone moieties as well as Ru(bpy)3 catalytic centers.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
TMSOTf-mediated 5/6-- hydroalkoxylation followed by the (3 + 2) cycloaddition cascade reaction of hydroxy cyclopropenes with aldehydes gave an expedient, stereoselective synthesis of [5.5]-and [6.5]-spiroketal derivatives.
View Article and Find Full Text PDFChem Asian J
December 2024
Humboldt-Universitat zu Berlin, Chemistry, Brook-Taylor Str 2, 12489, Berlin, GERMANY.
Metal mediated several organic reactions are known which can be used inside the cellular medium for protein modifications, eventually for targeting diseases. Indeed, due to ease of handling-rapid solubility-fast cell penetration metals are superior than any other competitor as a stimulus/mediator in organic reactions relevant with protein modifications. Metal mediated most effective reactions as a chemical biology tool are Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC)/click reactions or Pd mediated multiple chemical reactions for intra/extra cellular protein modifications etc.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
The activation of C-C bond of benzocyclobutenones under mild reaction conditions remains a challenge. We herein report a photoinduced catalyst-free regio-specific C1-C8 bond cleavage of benzocyclobutenones, enabling the generation of versatile ortho-quinoid ketene methides for aza-[4 + 2]-cycloaddition with imines, which offers a facile route to isoquinolinone derivatives, including seven family members of protoberberine alkaloids, gusanlung A, B, D, 8-oxotetrahydroplamatine, tetrahydrothalifendine, tetrahydropalmatine, and xylopinine. Furthermore, the catalytic enantioselective version of this strategy is also realized by merging synergistic photocatalysis and chiral Lewis acid catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!