Two of the most prevalent ovarian diseases affecting women's fertility and health are Primary Ovarian Insufficiency (POI) and Polycystic Ovarian Syndrome (PCOS). Previous studies have shown that exposure to a number of environmental toxicants can promote the epigenetic transgenerational inheritance of ovarian disease. In the current study, transgenerational changes to the transcriptome and epigenome of ovarian granulosa cells are characterized in F3 generation rats after ancestral vinclozolin or DDT exposures. In purified granulosa cells from 20-day-old F3 generation females, 164 differentially methylated regions (DMRs) (P < 1 x 10) were found in the F3 generation vinclozolin lineage and 293 DMRs (P < 1 x 10) in the DDT lineage, compared to controls. Long noncoding RNAs (lncRNAs) and small noncoding RNAs (sncRNAs) were found to be differentially expressed in both the vinclozolin and DDT lineage granulosa cells. There were 492 sncRNAs (P < 1 x 10) in the vinclozolin lineage and 1,085 sncRNAs (P < 1 x 10) in the DDT lineage. There were 123 lncRNAs and 51 lncRNAs in the vinclozolin and DDT lineages, respectively (P < 1 x 10). Differentially expressed mRNAs were also found in the vinclozolin lineage (174 mRNAs at P < 1 x 10) and the DDT lineage (212 mRNAs at P < 1 x 10) granulosa cells. Comparisons with known ovarian disease associated genes were made. These transgenerational epigenetic changes appear to contribute to the dysregulation of the ovary and disease susceptibility that can occur in later life. Observations suggest that ancestral exposure to toxicants is a risk factor that must be considered in the molecular etiology of ovarian disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224216PMC
http://dx.doi.org/10.1080/15592294.2018.1521223DOI Listing

Publication Analysis

Top Keywords

epigenetic transgenerational
8
transgenerational inheritance
8
ovarian
8
inheritance ovarian
8
polycystic ovarian
8
ovarian syndrome
8
primary ovarian
8
granulosa cells
8
environmental toxicant
4
toxicant induced
4

Similar Publications

Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.

View Article and Find Full Text PDF

Miniature-inverted-repeat transposable elements contribute to phenotypic variation regulation of rice induced by space environment.

Front Plant Sci

January 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.

Introduction: Rice samples exposed to the space environment have generated diverse phenotypic variations. Miniature-inverted-repeat transposable elements (MITEs), often found adjacent to genes, play a significant role in regulating the plant genome. Herein, the contribution of MITEs in regulating space-mutagenic phenotypes was explored.

View Article and Find Full Text PDF

Improving the odds of survival: transgenerational effects of infections.

EMBO Mol Med

January 2025

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB, Nijmegen, the Netherlands.

Recent studies argue for a novel concept of the role of chromatin as a carrier of epigenetic memory through cellular and organismal generations, defining and coordinating gene activity states and physiological functions. Environmental insults, such as exposures to unhealthy diets, smoking, toxic compounds, and infections, can epigenetically reprogram germ-line cells and influence offspring phenotypes. This review focuses on intergenerational and transgenerational epigenetic inheritance in different plants, animal species and humans, presenting the up-to-date evidence and arguments for such effects in light of Darwinian and Lamarckian evolutionary theories.

View Article and Find Full Text PDF

Caenorhabditis Elegans as a Model for Environmental Epigenetics.

Curr Environ Health Rep

January 2025

Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.

Purpose Of Review: The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans.

Recent Findings: Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations.

View Article and Find Full Text PDF

Slavery, legal segregation, and ongoing discrimination have exacted an unfathomable toll on the black population in the United States, particularly with respect to the impact on health outcomes. In recent years, various researchers and activists have suggested that racial disparities in the modern era can be attributed directly to the trauma of slavery, postulating that these unspeakable traumas led to epigenetic changes in slaves-changes that have since been passed down to subsequent generations. Investigating those claims in this paper, we comprise a review of previous literature that considers the potential for transgenerational epigenetic transmission of trauma in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!