Various metal (Al, Ti, Fe, Ni, and Cu) surfaces with native oxide layers were rendered "omniphobic" by a simple thermal treatment of neat liquid trimethylsiloxy-terminated polymethylhydrosiloxanes (PMHSs) with a range of different molecular weights (MWs). Because of this treatment, the PMHS chains were covalently attached to the oxidized metal surfaces, giving 2-10 nm thick PMHS layers. The resulting surfaces were fairly smooth, liquid-like, and showed excellent dynamic omniphobicity with both low contact angle hysteresis (≲5°) and substrate tilt angles (≲8°) toward small-volume liquid drops (5 μL) with surface tensions ranging from 20.5 to 72.8 mN/m. Droplet mobility was improved overall as a result of heating the substrates to 70 °C. The reaction kinetics and final dynamic dewetting properties were found to be not dependent of the types of metals employed or MWs of PMHS, but mainly dominated by both reaction temperatures and reaction times.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b02430DOI Listing

Publication Analysis

Top Keywords

metal surfaces
12
low contact
8
contact angle
8
angle hysteresis
8
tilt angles
8
omniphobic metal
4
surfaces
4
surfaces low
4
hysteresis tilt
4
angles metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!