Biomedical engineering seeks to enhance the quality of life by developing advanced materials and technologies. Chitosan-based biomaterials have attracted significant attention because of having unique chemical structures with desired biocompatibility and biodegradability, which play different roles in membranes, sponges and scaffolds, along with promising biological properties such as biocompatibility, biodegradability and non-toxicity. Therefore, chitosan derivatives have been widely used in a vast variety of uses, chiefly pharmaceuticals and biomedical engineering. It is attempted here to draw a comprehensive overview of chitosan emerging applications in medicine, tissue engineering, drug delivery, gene therapy, cancer therapy, ophthalmology, dentistry, bio-imaging, bio-sensing and diagnosis. The use of Stem Cells (SCs) has given an interesting feature to the use of chitosan so that regenerative medicine and therapeutic methods have benefited from chitosan-based platforms. Plenty of the most recent discussions with stimulating ideas in this field are covered that could hopefully serve as hints for more developed works in biomedical engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1574888X13666180912142028 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.
This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.
View Article and Find Full Text PDFJACC Cardiovasc Imaging
January 2025
Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Cardiac involvement in amyloid light chain (AL) amyloidosis significantly influences prognosis, necessitating timely diagnosis and meticulous risk stratification.
Objectives: This prospective study aimed to delineate the molecular phenotypes of AL cardiac amyloidosis (AL-CA) by characterizing fibro-amyloid deposition using F-florbetapir and gallium-68-labeled fibroblast activation protein inhibitor-04 (Ga-FAPI-04) positron emission tomography (PET)/computed tomography (CT) imaging. The authors also proposed a novel molecular stratification methodology for prognosis.
JACC Cardiovasc Interv
December 2024
British Heart Foundation Centre of Research Excellence at the School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom; Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!