The tumor microenvironment regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. Increased expression of type X collagen α-1 (ColXα1) in tumor-associated stroma correlates with poor pathologic response to neoadjuvant chemotherapy in estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Evaluation of ColXα1 expression patterns suggests a potential connection with elastin fibers. To investigate the possible interaction between ColXα1 and elastin, we evaluated the expression of ColXα1 in relation to elastin fibers in normal breast tissue, ductal carcinoma in situ, and invasive breast carcinomas at cellular and subcellular levels. Our findings demonstrate that ColXα1 colocalizes with elastin in invasive breast cancer-associated stroma by immunohistochemistry, immunofluorescence, and electron microscopy. In 212 invasive breast carcinomas, this complex was aberrantly and selectively expressed in tumor extracellular matrix in 79% of ER+/HER2-, 80% of ER+/HER2+, 76% of ER-/HER2+, and 58% of triple negative breast cancers. In contrast, ColXα1 was generally absent, while elastin was present perivascularly in normal breast tissue. ColXα1 and elastin were coexpressed in 58% of ductal carcinoma in situ (DCIS) in periductal areas. In mass-forming DCIS with desmoplastic stroma, the complex was intensely expressed in periductal areas as well as within the tumor-associated stroma in all cases. Our data suggest that the breast carcinoma neoplastic process may involve aberrant expression of ColXα1 and elastin in the tumor microenvironment emerging early at the DCIS stage. Enrichment of these complexes in tumor-associated stroma may represent a stromal signature indicative of intrinsic differences between breast cancers. These findings shed light on investigation into the role of aberrant collagen complex expression in tumorigenesis and tumor progression which may be leveraged in therapeutic and theranostic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317058 | PMC |
http://dx.doi.org/10.1002/cjp2.115 | DOI Listing |
J Immunother Cancer
December 2024
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.
Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).
Int J Mol Sci
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany.
Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, especially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 antibody treatment was recently approved for recurrent and metastatic cases but to date, response rates remain lower than 25%.
View Article and Find Full Text PDFBiomolecules
December 2024
School of Cancer Sciences, Wolfson Wohl Cancer Research Institute, University of Glasgow, Estate, Glasgow G61 1BD, UK.
Colorectal cancer is the third most diagnosed malignancy worldwide and survival outcomes remain poor. Research is focused on the identification of novel prognostic and predictive biomarkers to improve clinical practice. There is robust evidence in the literature that inflammatory cytokine interleukin-6 (IL6) is elevated systemically in CRC patients and that this phenomenon is a predictor of poor survival outcome.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Background: To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect.
View Article and Find Full Text PDFCancer Immunol Immunother
December 2024
Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Abundant infiltration of tumor-associated macrophages (TAMs) within the tumor stroma plays a pivotal role in inducing immune escape in pancreatic cancer (PC). Lactate serves as a direct regulator of macrophage polarization and functions, although the precise regulation mechanism remains inadequately understood. Our study revealed that PC cells (PCs) promote macrophage polarization toward M2d through high lactate secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!