Purpose: 3-O-Methyl-D-glucose (3-OMG) is a nonmetabolizable structural analog of glucose that offers potential to be used as a CEST-contrast agent for tumor detection. Here, we explore it for CEST-detection of malignant brain tumors and compare it with D-glucose.
Methods: Glioma xenografts of a U87-MG cell line were implanted in five mice. Dynamic 3-OMG weighted images were collected using CEST-MRI at 11.7 T at a single offset of 1.2 ppm, showing the effect of accumulation of the contrast agent in the tumor, following an intravenous injection of 3-OMG (3 g/kg).
Results: Tumor regions showed higher enhancement as compared to contralateral brain. The CEST contrast enhancement in the tumor region ranged from 2.5-5.0%, while it was 1.5-3.5% in contralateral brain. Previous D-glucose studies of the same tumor model showed an enhancement of 1.5-3.0% and 0.5-1.5% in tumor and contralateral brain, respectively. The signal gradually stabilized to a value that persisted for the length of the scan.
Conclusions: 3-OMG shows a CEST contrast enhancement that is approximately twice as much as that of D-glucose for a similar tumor line. In view of its suggested low toxicity and transport properties across the BBB, 3-OMG provides an option to be used as a nonmetallic contrast agent for evaluating brain tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6347504 | PMC |
http://dx.doi.org/10.1002/mrm.27489 | DOI Listing |
Neuro Oncol
January 2025
Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.
Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Gilgamesh Ahliya University, Baghdad, Iraq.
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.
View Article and Find Full Text PDFJ Pathol
January 2025
Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
DICER1-associated sarcoma is an emerging entity, defined by either somatic or germline dicer 1, ribonuclease III (DICER1) mutations and sharing characteristic morphologic features irrespective of the site of origin. In addition to the DICER1 driver mutation, concurrent genomic alterations, including tumor protein 53 (TP53) inactivation and RAS pathway activation, are frequently detected. Tumors that morphologically resemble malignant peripheral nerve sheath tumor (MPNST) have rarely been reported among DICER1 sarcomas and often pose diagnostic challenges.
View Article and Find Full Text PDFJCI Insight
January 2025
Centre for Cancer Research, Hudson Institute of Medical Research, and.
Pediatric high-grade gliomas (pHGGs) are the most aggressive brain tumors in children, necessitating innovative therapies to improve outcomes. Unlike adult gliomas, recent research reveals that childhood gliomas have distinct biological features, requiring specific treatment strategies. Here, we focused on deciphering unique genetic dependencies specific to childhood gliomas.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China.
Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.
Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!