Activation of PD-1 Protects Intestinal Immune Defense Through IL-10/miR-155 Pathway After Intestinal Ischemia Reperfusion.

Dig Dis Sci

Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510089, China.

Published: December 2018

Background: To date, mechanisms of intestinal immunoglobulin (Ig) dysfunction following intestinal ischemia/reperfusion (I/R) remain unclear. Programmed death 1 (PD-1) is associated with immune responses of lymphocytes.

Aim: We aimed to verify the hypothesis that activation of PD-1 may improve intestinal immune dysfunction by regulating IL-10/miR-155 production after intestinal IR injury.

Methods: Intestinal I/R injury was induced in mice by clamping the superior mesenteric artery for 1 h followed by 2-h reperfusion. PD-L1 fusion Ig, anti-interleukin (IL)-10 monoclonal antibody (mAb), and microRNA (miR)-155 agomir were administered. PD-1 expression, IL-10 mRNA, and protein expression in Peyer's patches (PP) CD4 cells were measured. MiR-155 levels, tumor necrosis factor (TNF)-α and IL-1β concentration, and activation-induced cytidine deaminase (AID), a key enzyme for intestinal immune antibodies, in PP tissues were measured, respectively. Importantly, the production and cecal bacteria-binding capacity of IgA and IgM were detected.

Results: Intestinal I/R led to decreased PD-1 expression, imbalanced production, and impaired bacteria-binding capacity of IgA and IgM. Activating PD-1 by PD-L1 Ig facilitated IL-10 synthesis, then decreased miR-155 levels, and subsequently promoted AID expression and reduced TNF-α, IL-1β concentration. Upregulation of AID improved the disruptions of intestinal immune barrier caused by IgA and IgM dysfunction. Anti-IL-10 mAb and miR-155 agomir abolished the protective effects of PD-L1 Ig on the intestinal immune defense.

Conclusion: Activation of PD-1 with PD-L1 Ig relieves intestinal immune defensive injury through IL-10/miR-155 pathway following intestinal I/R attack. PD-1, IL-10, and miR-155 may be potential targets for the damages of intestinal barrier and immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10620-018-5282-2DOI Listing

Publication Analysis

Top Keywords

intestinal immune
24
intestinal
14
activation pd-1
12
intestinal i/r
12
iga igm
12
il-10/mir-155 pathway
8
pathway intestinal
8
mir-155 agomir
8
pd-1 expression
8
mir-155 levels
8

Similar Publications

Interplay between the Unfolded Protein Response and Gut Microbiota: Implications for Intestinal Homeostasis Preservation and Dysbiosis-related Diseases.

Microb Pathog

January 2025

Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.

The unfolded protein response (UPR) is a complex intracellular signal transduction system that orchestrates the cellular response during Endoplasmic Reticulum (ER) stress conditions to reestablish cellular proteostasis. If, on one side, prolonged ER stress conditions can lead to programmed cell death and autophagy as a cytoprotective mechanism, on the other, unresolved ER stress and improper UPR activation represent a perilous condition able to trigger or exacerbate inflammatory responses. Notably, intestinal and immune cells experience ER stress physiologically due to their high protein secretory rate.

View Article and Find Full Text PDF

The anti-PD-1 mAb may be further considered along with PGD2 or active molecules that can promote PGD2 synthesis to enhance the anti-tumor immune response.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide-producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine.

View Article and Find Full Text PDF

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!