A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using drug-loaded pH-responsive poly(4-vinylpyridine) microspheres as a new strategy for intelligent controlling of Lactobacillus plantarum contamination in bioethanol fermentation. | LitMetric

Bioethanol fermentation is usually contaminated by bacteria, especially lactic acid bacteria (LAB), thereby leading to decrease of bioethanol yield and serious economic losses. Nisin is safer for controlling of bacterial contamination than antibiotics that are widely applied in industry. Moreover, in LAB contaminative bioethanol fermentation system, consistently decreased pH value provides opportunity to realize pH value responsive material-based release of anti-bacteria substances for intelligent and persistent controlling of bacterial contamination. In this study, nisin was embedded into pH-sensitive poly(4-vinylpyridine) (P4VP) microspheres synthesized by suspension polymerization to realize intelligent controlling of Lactobacillus plantarum contamination in bioethanol fermentation. Chloramphenicol with the highest antimicrobial activity and excellent stability was chosen as the model drug to be embedded into P4VP microspheres to test the drug release behavior. The drug release curve of chloramphenicol-loaded P4VP microspheres showed sustained and pH-responsive release properties. The diameters of the microspheres ranged from 40 to 100 µm. The encapsulation efficiency of nisin into P4VP microspheres was 47.67% and the drug-loading capacity of nisin was 2.5%. Nisin-loaded P4VP microspheres were added into the simulated contaminative fermentation system, and successfully reversed the decline of bioethanol yield secondary to L. plantarum contamination. The results in this study indicated that L. plantarum contamination in bioethanol fermentation could be effectively controlled by nisin-loaded P4VP microspheres.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-018-2533-5DOI Listing

Publication Analysis

Top Keywords

p4vp microspheres
24
bioethanol fermentation
20
plantarum contamination
16
contamination bioethanol
12
microspheres
8
intelligent controlling
8
controlling lactobacillus
8
lactobacillus plantarum
8
bioethanol yield
8
controlling bacterial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!