ERG Channels Regulate Excitability in Stellate and Bushy Cells of Mice Ventral Cochlear Nucleus.

J Membr Biol

Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.

Published: December 2018

ERG (ether-a-go-go-related gene) channels are the members of the voltage-dependent potassium channel family, which have three subtypes, as ERG1 (Kv 11.1), ERG2 (Kv 11.2), and ERG3 (Kv11.3). There is no information on ERG channels in the cochlear nucleus (CN) neurons, which is the first relay station of the auditory pathway. As occur in some of congenital long QT Syndromes (LQTS), mutation of the KCNQ11 genes for ERG channel has been reported to be accompanied by hearing loss. For that reason, we aimed to study biophysical properties and physiological importance, and contribution of ERG K currents to the formation of action potentials in the stellate and bushy neurons of the ventral cochlear nucleus (VCN). A total of 70 mice at 14-17 days old were used for this study. Electrophysiological characterization of ERG channels was performed using patch-clamp technique in the CN slices. In current clamp, ERG channel blockers, terfenadine (10 µM) and E-4031 (10 µM), were applied in both cell types. The activation, inactivation, and deactivation kinetics of the ERG channels were determined by voltage clamp. In conclusion, the findings obtained in the present study suggest that stellate and bushy neurons express ERG channels and ERG channels appear to contribute to setting action potential (AP) frequency, threshold for AP induction, and, possibly, resting membrane potentials in this cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-018-0048-5DOI Listing

Publication Analysis

Top Keywords

erg channels
24
stellate bushy
12
cochlear nucleus
12
erg
10
ventral cochlear
8
erg channel
8
bushy neurons
8
channels
6
channels regulate
4
regulate excitability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!