Sequential deposition of microdroplets on patterned surfaces.

Soft Matter

School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Published: November 2018

We use a combination of experiments and numerical modelling to investigate the influence of physico-chemical-patterned substrates on the spreading of fluid deposited as a partially overlapping sequence of droplets via inkjet printing. Our investigation is motivated by the manufacture of polymeric organic light-emitting-diode displays, where the substrate is textured with a regular array of shallow recessed regions (pixels) that are highly wetting compared to the remainder of the substrate. We examine the roles of topography and wettability patterning separately and in combination. On a substrate with uniform wettability, we find that the presence of bounding side walls enhances the local spreading and facilitates fluid coverage of the entire recessed region, but containment within the pixel is not guaranteed. In contrast, wettability patterning alone leads to robust containment of the fluid within the wetting region, but fluid coverage is reduced in the absence of side walls. Our theoretical calculations use a simplified numerical model of fluid redistribution via purely capillary effects, augmented by a Cox-Voinov spreading law. The neglect of fluid viscosity in this model means that, after an initial period of agreement, the predicted evolution is faster than in the experiments. Nonetheless, the simplified model achieves excellent predictions both for the liquid morphologies and for the conditions required for successful pixel filling on substrates with topographical and wettability variations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm01373jDOI Listing

Publication Analysis

Top Keywords

wettability patterning
8
side walls
8
fluid coverage
8
fluid
6
sequential deposition
4
deposition microdroplets
4
microdroplets patterned
4
patterned surfaces
4
surfaces combination
4
combination experiments
4

Similar Publications

Study of the pH effects on water-oil-illite interfaces by molecular dynamics.

Phys Chem Chem Phys

January 2025

Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Universidad Industrial de Santander, Colombia.

Illite mineral is present in shale rocks, and its wettability behavior is significant for the oil and gas industry. In this work, the pH effects on the affinity between the (001) and (010) crystallographic planes of illite K(SiAl)(AlMg)O(OH) and direct and inverse emulsions were studied using molecular dynamics simulations. To develop the simulations, an atomistic model of illite was constructed following Löwenstein's rule.

View Article and Find Full Text PDF

This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.

View Article and Find Full Text PDF

The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.

View Article and Find Full Text PDF

Assessment of surface treatment methods for strengthening the interfacial adhesion in CARALL fiber metal laminates.

Sci Rep

December 2024

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

Metal and polymer interface bonding significantly influences the mechanical performance of fiber metal laminates (FMLs). Therefore, the effect of surface treatments (mechanical abrasion, nitric acid etching, P2 etching, sulfuric acid anodizing (SAA), and electric discharge machine (EDM) texturing) carried on aluminum 2024-T3 alloy sheets was evaluated considering surface morphology, surface topography, and surface roughness. Further, the influence of surface treatments on interfacial adhesion strength and failure mode between the aluminum alloy and carbon fiber prepreg was investigated.

View Article and Find Full Text PDF

This study explores the bubble nucleation process and heat transfer characteristics on nanostructured solid surfaces with mixed-wettable pillars using molecular dynamics simulations. Five different surfaces were designed by varying the wettability of the central pillars while keeping the lateral pillars hydrophilic. The nucleation behavior of argon bubbles was observed to differ significantly across these surfaces due to the combined effects of nanostructuring and mixed wettability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!