Overexpression of the oncogene MYBL2 (B-Myb) is associated with increased cell proliferation and serves as a marker of poor prognosis in cancer. However, the mechanism by which B-Myb alters the cell cycle is not fully understood. In proliferating cells, B-Myb interacts with the MuvB core complex including LIN9, LIN37, LIN52, RBBP4, and LIN54, forming the MMB (Myb-MuvB) complex, and promotes transcription of genes required for mitosis. Alternatively, the MuvB core interacts with Rb-like protein p130 and E2F4-DP1 to form the DREAM complex that mediates global repression of cell cycle genes in G0/G1, including a subset of MMB target genes. Here, we show that overexpression of B-Myb disrupts the DREAM complex in human cells, and this activity depends on the intact MuvB-binding domain in B-Myb. Furthermore, we found that B-Myb regulates the protein expression levels of the MuvB core subunit LIN52, a key adapter for assembly of both the DREAM and MMB complexes, by a mechanism that requires S28 phosphorylation site in LIN52. Given that high expression of B-Myb correlates with global loss of repression of DREAM target genes in breast and ovarian cancer, our findings offer mechanistic insights for aggressiveness of cancers with MYBL2 amplification, and establish the rationale for targeting B-Myb to restore cell cycle control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377300PMC
http://dx.doi.org/10.1038/s41388-018-0490-yDOI Listing

Publication Analysis

Top Keywords

cell cycle
16
dream complex
12
muvb core
12
b-myb
9
high expression
8
target genes
8
cell
5
dream
5
complex
5
cycle regulatory
4

Similar Publications

miRNA Expression Profile in Primary Limbal Epithelial Cells of Aniridia Patients.

Invest Ophthalmol Vis Sci

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.

Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.

Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.

View Article and Find Full Text PDF

SQSTM1/p62 predicts prognosis and upregulates the transcription of CCND1 to promote proliferation in mantle cell lymphoma.

Protoplasma

January 2025

Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.

Mantle cell lymphoma (MCL) is a rare, highly invasive non-Hodgkin's lymphoma. The main pathogenesis of MCL is associated with the formation of the IgH/CCND1 fusion gene and nuclear overexpression of cyclin D1, which accelerates the cell cycle, leading to tumorigenesis. The prognosis with current standard chemotherapy is still unsatisfactory.

View Article and Find Full Text PDF

Purpose: Brentuximab vedotin (BV) is hypothesized to selectively deplete T regulatory cells (Tregs) that express CD30 and re-sensitize tumors to anti-(PD-1) therapy. This study evaluated responses to BV+pembrolizumab post PD-1 and explored corresponding biomarkers.

Methods: 55 patients with metastatic non-small cell lung cancer (NSCLC) and 58 with metastatic cutaneous melanoma received ≥1 dose of BV+pembrolizumab.

View Article and Find Full Text PDF

Parainfluenza virus type 5 (PIV5) can cause either persistent or acute/lytic infections in a wide range of mammalian tissue culture cells. Here, we have generated PIV5 fusion (F)-expressing helper cell lines that support the replication of F-deleted viruses. As proof of the principle that F-deleted single-cycle infectious viruses can be used as safe and efficient expression vectors, we have cloned and expressed a humanized (Hu) version of the mouse anti-V5 tag antibody (clone SV5-Pk1).

View Article and Find Full Text PDF

Long-Life Zinc Anodes via Molecular-Layer-Deposited Inorganic-Organic Hybrid Titanicone Thin Films.

ACS Appl Mater Interfaces

January 2025

National Laboratory of Solid-State Microstructure, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, P. R. China.

Zinc-ion batteries (ZIBs) have consistently faced challenges related to the instability of the zinc anode. Uncontrolled dendrite growth, hydrogen evolution reaction (HER), and byproduct accumulation on the zinc anode severely affect the cycling life of ZIBs. Herein, inorganic-organic hybrid thin films of titanicones (Ti-based hydroquinone, TiHQ) were fabricated by molecular layer deposition (MLD) technology to modify the zinc metal anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!