Prediction of phenotypic consequences of mutations constitutes an important aspect of precision medicine. Current computational tools mostly rely on evolutionary conservation and have been calibrated on variants associated with disease, which poses conceptual problems for assessment of variants in poorly conserved pharmacogenes. Here, we evaluated the performance of 18 current functionality prediction methods leveraging experimental high-quality activity data from 337 variants in genes involved in drug metabolism and transport and found that these models only achieved probabilities of 0.1-50.6% to make informed conclusions. We therefore developed a functionality prediction framework optimized for pharmacogenetic assessments that significantly outperformed current algorithms. Our model achieved 93% for both sensitivity and specificity for both loss-of-function and functionally neutral variants, and we confirmed its superior performance using cross validation analyses. This novel model holds promise to improve the translation of personal genetic information into biological conclusions and pharmacogenetic recommendations, thereby facilitating the implementation of Next-Generation Sequencing data into clinical diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462826 | PMC |
http://dx.doi.org/10.1038/s41397-018-0044-2 | DOI Listing |
Biomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFPLoS One
January 2025
Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.
View Article and Find Full Text PDFPLoS One
January 2025
SLIIT Business School, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.
This study explores the integration of sexual and reproductive health (SRH) education in Sri Lanka, utilizing the Health Belief Model (HBM) to predict the perceived quality of SRH education among non-state undergraduate students. In many Asian countries, including Sri Lanka, cultural resistance and skepticism often challenge SRH education initiatives. The research is based on a questionnaire survey, examining factors influencing the perceived quality of SRH education, such as cultural norms, embarrassment, attitudes, awareness, and institutional support.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
BIFOLD─Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany.
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!