Precision gravimetry is key to a number of scientific and industrial applications, including climate change research, space exploration, geological surveys and fundamental investigations into the nature of gravity. A variety of quantum systems, such as atom interferometry and on-chip-Bose-Einstein condensates have thus far been investigated to this aim. Here, we propose a new method which involves using a quantum optomechanical system for measurements of gravitational acceleration. As a proof-of-concept, we investigate the fundamental sensitivity for gravitational accelerometry of a cavity optomechanical system with a trilinear radiation pressure light-matter interaction. The phase of the optical output encodes the gravitational acceleration g and is the only component which needs to be measured. We prove analytically that homodyne detection is the optimal readout method and we predict an ideal fundamental sensitivity of Δg = 10 ms for state-of-the-art parameters of optomechanical systems, showing that they could, in principle, surpass the best atomic interferometers even for low optical intensities. Further, we show that the scheme is strikingly robust to the initial thermal state of the oscillator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133990 | PMC |
http://dx.doi.org/10.1038/s41467-018-06037-z | DOI Listing |
Luminescence
December 2024
Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia.
This study investigates the optical, mechanical, and antimicrobial properties of polypropylene (PP) fibers enhanced with titanium dioxide (TiO) and zinc oxide (ZnO) nanoparticles. Using a Mach-Zehnder interferometric system, we examined the refractive indices, birefringence, and opto-mechanical behavior of blank PP, PP/TiO, and PP/ZnO nanocomposite fibers under various conditions, including different polarization orientations and during cold drawing processes. The 2D Fourier transform algorithm is employed to analyze interferometric data, enabling precise measurements of refractive index profiles and birefringence.
View Article and Find Full Text PDFScience
December 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.
View Article and Find Full Text PDFHardwareX
December 2024
Department of Physics, Osnabrueck University, 49076 Osnabrueck, Germany.
In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable.
View Article and Find Full Text PDFNanophotonics
July 2024
University of Southampton, Southampton, UK.
Optically levitated multiple nanoparticles have emerged as a platform for studying complex fundamental physics such as non-equilibrium phenomena, quantum entanglement, and light-matter interaction, which could be applied for sensing weak forces and torques with high sensitivity and accuracy. An optical trapping landscape of increased complexity is needed to engineer the interaction between levitated particles beyond the single harmonic trap. However, existing platforms based on spatial light modulators for studying interactions between levitated particles suffered from low efficiency, instability at focal points, the complexity of optical systems, and the scalability for sensing applications.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Max Planck Institute for the Science of Light, Staudtstraße 2, D-91058 Erlangen, Germany.
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom, such as light and mechanics, is of interest for a wide range of applications in quantum technologies. Here, we propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system and the accompanying light wave. The effect is achieved by applying optical pump pulses to state-of-the-art waveguides, exciting a Brillouin Stokes process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!