A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. | LitMetric

The induced pluripotent stem cell (iPSC) technology has provided a unique opportunity to develop disease-specific models and personalized treatment for genetic disorders, and is well suitable for the study of Werner syndrome (WS), an autosomal recessive disease with adult onset of premature aging caused by mutations in the RecQ like helicase (WRN) gene. WS-derived fibroblasts were previously shown to be able to generate iPSCs; however, it remains elusive how WS-derived iPSCs behave and whether they are able to mimic the disease-specific phenotype. The present study was designed to address these issues. Unexpectedly, we found that a specific WS fibroblast line of homozygous truncation mutation was difficult to be reprogrammed by using the Yamanaka factors even under hypoxic conditions due to their defect in induction of hTERT, the catalytic unit of telomerase. Ectopic expression of hTERT restores the ability of this WS fibroblast line to form iPSCs, although with a low efficiency. To examine the phenotype of WRN-deficient pluripotent stem cells, we also generated WRN knockout human embryonic stem (ES) cells by using the CRISPR/Cas9 method. The iPSCs derived from WS-hTERT cells and WRN-/- ESCs are fully pluripotent, express pluripotent markers and can differentiate into three germ layer cells; however, WS-iPSCs and WRN-/- ESCs show S phase defect in cell cycle progression. Moreover, WS-iPSCs and WRN-/- ESCs, like WS patient-derived fibroblasts, remain hypersensitive to topoisomerase inhibitors. Collectively, WS-derived iPSCs and WRN-/- ESCs mimic the intrinsic disease phenotype, which may serve as a suitable disease model, whereas not be good for a therapeutic purpose without gene correction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134116PMC
http://dx.doi.org/10.1038/s41419-018-0948-4DOI Listing

Publication Analysis

Top Keywords

wrn-/- escs
16
werner syndrome
8
pluripotent stem
8
ws-derived ipscs
8
stem cells
8
ws-ipscs wrn-/-
8
ipscs
5
ectopic htert
4
htert expression
4
expression facilitates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!