Developing precision medicine using scarless genome editing of human pluripotent stem cells.

Drug Discov Today Technol

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. Electronic address:

Published: August 2018

Many avenues exist for human pluripotent stem cells (hPSCs) to impact medical care, but they may have their greatest impact on the development of precision medicine. Recent advances in genome editing and stem cell technology have enabled construction of clinically-relevant, genotype-specific "disease-in-a-dish" models. In this review, we outline the use of genome-edited hPSCs in precision disease modeling and drug screening as well as describe methodological advances in scarless genome editing. Scarless genome-editing approaches are attractive for genotype-specific disease modeling as only the intended DNA base-pair edits are incorporated without additional genomic modification. Emerging evidentiary standards for development and approval of precision therapies are likely to increase application of disease models derived from genome-edited hPSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136251PMC
http://dx.doi.org/10.1016/j.ddtec.2018.02.001DOI Listing

Publication Analysis

Top Keywords

genome editing
12
precision medicine
8
scarless genome
8
human pluripotent
8
pluripotent stem
8
stem cells
8
genome-edited hpscs
8
disease modeling
8
developing precision
4
medicine scarless
4

Similar Publications

Characterization of diverse Cas9 orthologs for genome and epigenome editing.

Proc Natl Acad Sci U S A

March 2025

Department of Biomedical Engineering, and Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708.

CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s.

View Article and Find Full Text PDF

Background: Cultivated strawberry (Fragaria xananassa Duch.), an allo-octoploid species arising from at least 3 diploid progenitors, poses a challenge for genomic analysis due to its high levels of heterozygosity and the complex nature of its polyploid genome.

Results: This study developed the complete haplotype-phased genome sequence from a short-day strawberry, 'Florida Brilliance' without parental data, assembling 56 chromosomes from telomere to telomere.

View Article and Find Full Text PDF

Intrapancreatic adipocytes and beta cell dedifferentiation in human type 2 diabetes.

Diabetologia

March 2025

Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.

Aims/hypothesis: Fat deposition in the pancreas is implicated in beta cell dysfunction and the progress of type 2 diabetes. However, there is limited evidence to confirm the correlation and explore how pancreatic fat links with beta cell dysfunction in human type 2 diabetes. This study aimed to examine the spatial relationship between pancreatic fat and islets in human pancreases.

View Article and Find Full Text PDF

Base editing, a CRISPR-based genome editing technology, enables precise correction of single-nucleotide variants, promising resolutive treatment for monogenic genetic disorders like recessive dystrophic epidermolysis bullosa (RDEB). However, the application of base editors in cell manufacturing is hindered by inconsistent efficiency and high costs, contributed by suboptimal delivery methods. Nanoneedles have emerged as an effective delivery approach, enabling highly efficient, non-perturbing gene therapies both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!