Nano Molybdenum trioxide (α-MoO₃) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored. The removal of MB was significantly affected by pH and temperature and higher values resulted in increase of removal capacity of MB. The removal efficiency of Methylene blue was 100% at pH = 11 for initial dye concentrations lower than 150 ppm, with a maximum removal capacity of 152 mg/g of MB as gathered from Langmuir model. By comparing the kinetic models (pseudo first-order, pseudo second-order and intraparticle diffusion model) at various conditions, it has been found that the pseudo second-order kinetic model correlates with the experimental data well. The thermodynamic study indicated that the removal was endothermic, spontaneous and favorable. The thermal regeneration studies indicated that the removal efficiency (99%) was maintained after four cycles of use. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) confirmed the presence of the MB dye on the α-MoO₃ nanoparticles after adsorption and regeneration. The α-MoO₃ nanosorbent showed excellent removal efficiency before and after regeneration, suggesting that it can be used as a promising adsorbent for removing Methylene blue dye from wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225373PMC
http://dx.doi.org/10.3390/molecules23092295DOI Listing

Publication Analysis

Top Keywords

methylene blue
16
removal capacity
12
removal efficiency
12
removal
10
molybdenum trioxide
8
removal methylene
8
blue dye
8
aqueous solutions
8
pseudo second-order
8
indicated removal
8

Similar Publications

A non-covalently bound redox indicator for electrochemical CRISPR-Cas12a and DNase I biosensors.

Anal Chim Acta

January 2025

Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322, USA; Department of Chemistry, University of Louisiana at Lafayette, 300 East St. Mary Blvd, Lafayette, LA, 70504, USA. Electronic address:

A rapid and accurate biosensor for detecting disease biomarkers at point-of-care is essential for early disease diagnosis and preventing pandemics. CRISPR-Cas12a is a promising recognition element for DNA biosensors due to its programmability, specificity, and deoxyribonuclease activity initiated in the presence of a biomarker. The current electrochemical CRISPR-Cas12a-based biosensors utilize the single-stranded DNA (ssDNA) self-assembled on an electrode surface and covalently modified with the redox indicator, usually methylene blue (MB).

View Article and Find Full Text PDF

Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China. Electronic address:

MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification.

View Article and Find Full Text PDF

Aggregated gold nanoparticles as photoactivators for the photopolymerization of proteins.

J Photochem Photobiol B

January 2025

Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:

Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.

View Article and Find Full Text PDF

The direct incorporation of borondipyrromethene (BODIPY) subunits into the structural backbone of covalent organic frameworks (COFs) gives facile access to porous photosensitizers but is still a challenging task. Here, we introduce β‑ketoenamine-linked BDP‑TFP‑COF, which crystallizes in AA‑stacking mode with hcb topology. A comprehensive characterization reveals high crystallinity and enhanced stability in a variety of solvents, excellent mesoporosity (SABET = 1042 m2 g-1), broad light absorption in the visible region, and red emission upon the exfoliation of few-layer COF nanosheets.

View Article and Find Full Text PDF

Aim: To compare the microleakage in class V cavities restored with Activa Bioactive Restorative, Activa Pronto, and nanohybrid composite.

Materials And Methods: Standardized class V cavity preparations (mesiodistal: 3 mm; occlusocervical: 2 mm; axial depth: 1 mm) were made on the buccal surface of 60 extracted intact maxillary premolar teeth. The preparations were divided into three experimental groups ( = 20) depending on the restorative material used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!