A System for In-Line 3D Inspection without Hidden Surfaces.

Sensors (Basel)

Instituto Tecnológico de Informática( ITI), Universidad Politècnica de València, 46022 Valencia, Spain.

Published: September 2018

This work presents a 3D scanner able to reconstruct a complete object without occlusions, including its surface appearance. The technique presents a number of differences in relation to current scanners: it does not require mechanical handling like robot arms or spinning plates, it is free of occlusions since the scanned part is not resting on any surface and, unlike stereo-based methods, the object does not need to have visual singularities on its surface. This system, among other applications, allows its integration in production lines that require the inspection of a large volume of parts or products, especially if there is an important variability of the objects to be inspected, since there is no mechanical manipulation. The scanner consists of a variable number of industrial quality cameras conveniently distributed so that they can capture all the surfaces of the object without any blind spot. The object is dropped through the common visual field of all the cameras, so no surface or tool occludes the views that are captured simultaneously when the part is in the center of the visible volume. A carving procedure that uses the silhouettes segmented from each image gives rise to a volumetric representation and, by means of isosurface generation techniques, to a 3D model. These techniques have certain limitations on the reconstruction of object regions with particular geometric configurations. Estimating the inherent maximum error in each area is important to bound the precision of the reconstruction. A number of experiments are presented reporting the differences between ideal and reconstructed objects in the system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165387PMC
http://dx.doi.org/10.3390/s18092993DOI Listing

Publication Analysis

Top Keywords

object
5
system in-line
4
in-line inspection
4
inspection hidden
4
hidden surfaces
4
surfaces work
4
work presents
4
presents scanner
4
scanner reconstruct
4
reconstruct complete
4

Similar Publications

Geometrically modulated contact forces enable hula hoop levitation.

Proc Natl Acad Sci U S A

January 2025

Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, Department of Mathematics, New York University, New York, NY 10012.

Mechanical systems with moving points of contact-including rolling, sliding, and impacts-are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body.

View Article and Find Full Text PDF

As the global economy expands, waterway transportation has become increasingly crucial to the logistics sector. This growth presents both significant challenges and opportunities for enhancing the accuracy of ship detection and tracking through the application of artificial intelligence. This article introduces a multi-object tracking system designed for unmanned aerial vehicles (UAVs), utilizing the YOLOv7 and Deep SORT algorithms for detection and tracking, respectively.

View Article and Find Full Text PDF

The joint Simon effect refers to inhibitory responses to spatially competing stimuli during a complementary task. This effect has been considered to be influenced by the social factors of a partner: sharing stimulus-action representation. According to this account, virtual interactions through their avatars would produce the joint Simon effect even when the partner did not physically exist in the same space because the avatars are intentional agents.

View Article and Find Full Text PDF

Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!