We synthetized and investigated the anti-leukemic potential of the novel cytostatic bis(4-hydroxycoumarin) derivative OT-55 which complied with the Lipinski's rule of 5 and induced differential toxicity in various chronic myeloid leukemia (CML) cell models. OT-55 triggered ER stress leading to canonical, caspase-dependent apoptosis and release of danger associated molecular patterns. Consequently, OT-55 promoted phagocytosis of OT-55-treated CML cells by both murine and human monocyte-derived macrophages. Moreover, OT-55 inhibited tumor necrosis factor α-induced activation of nuclear factor-кB and produced synergistic effects when used in combination with imatinib to inhibit colony formation in vitro and Bcr-Abl patient blast xenograft growth in zebrafish. Furthermore, OT-55 synergized with omacetaxine in imatinib-resistant KBM-5 R cells to inhibit the expression of Mcl-1, triggering apoptosis. In imatinib-resistant K562 R cells, OT-55 triggered necrosis and blocked tumor formation in zebrafish in combination with omacetaxine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2018.07.041DOI Listing

Publication Analysis

Top Keywords

cml cells
8
ot-55 triggered
8
ot-55
6
hydroxycoumarin ot-55
4
ot-55 kills
4
kills cml
4
cells
4
cells synergy
4
synergy imatinib
4
imatinib synribo
4

Similar Publications

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML.

View Article and Find Full Text PDF

Chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia patients largely benefit from an expanding tyrosine kinase inhibitors (TKIs) toolbox that has improved the outcome of both diseases. However, TKI success is continuously challenged by mutation-driven acquired resistance and therefore, close monitoring of clonal genetic diversity is necessary to ensure proper clinical management and adequate response to treatment. Here, we report the case of a ponatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) patient harboring a BCR::ABL1 p.

View Article and Find Full Text PDF

Imatinib mesylate (IM) is a first-line therapy for chronic myeloid leukemia (CML) and exhibits good therapeutic effects, but not in all patients with CML owing to drug resistance. Our previous study showed that Cyr61 plays a key role in IM resistance in CML cells. Paeoniflorin (PF) is a bioactive compound isolated from the traditional Chinese medicine Paeonia lactiflora Pall that displays anticancer activity.

View Article and Find Full Text PDF

The most frequent type of leukemia in Africa is chronic myeloid leukemia (CML). The genetic background of the rarer Philadelphia chromosome (Ph) Ph-ve (BCR-ABL-ve) subform of CML is largely unknown in African patients. Therefore, in this study, we aimed to investigate the role of CYP1A1 and 2D6 SNPs in the pathogenesis of Ph-ve CML in the Sudanese population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!