Role of medial hypothalamic orexin system in panic, phobia and hypertension.

Brain Res

Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA. Electronic address:

Published: March 2020

Orexin has been implicated in a number of physiological functions, including arousal, regulation of sleep, energy metabolism, appetitive behaviors, stress, anxiety, fear, panic, and cardiovascular control. In this review, we will highlight research focused on orexin system in the medial hypothalamic regions of perifornical (PeF) and dorsomedial hypothalamus (DMH), and describe the role of this hypothalamic neuropeptide in the behavioral expression of panic and consequent fear and avoidance responses, as well as sympathetic regulation and possible development of chronic hypertension. We will also outline recent data highlighting the clinical potential of single and dual orexin receptor antagonists for neuropsychiatric conditions including panic, phobia, and cardiovascular conditions, such as in hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2018.09.010DOI Listing

Publication Analysis

Top Keywords

medial hypothalamic
8
orexin system
8
panic phobia
8
role medial
4
orexin
4
hypothalamic orexin
4
panic
4
system panic
4
phobia hypertension
4
hypertension orexin
4

Similar Publications

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive.

View Article and Find Full Text PDF

The effects of social loss and isolation on partner odor investigation and dopamine and oxytocin receptor expression in female prairie voles.

Neuropharmacology

January 2025

Neurosciences PhD Program, School of Pharmacy, University of Kansas, Lawrence, KS, United States; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States. Electronic address:

In humans, grief is characterized by intense sadness, intrusive thoughts of the deceased, and intense longing for reunion with the deceased. Human fMRI studies show hyperactivity in emotional pain and motivational centers of the brain when an individual is reminded of a deceased attachment figure, but the molecular underpinnings of these changes in activity are unknown. Prairie voles (Microtus ochrogaster), which establish lifelong social bonds between breeding pairs, also display distress and motivational shifts during periods of prolonged social loss, providing a model to investigate these behavioral and molecular changes at a mechanistic level.

View Article and Find Full Text PDF

Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.

Brain Struct Funct

January 2025

Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.

The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!