The Beckwith-Wiedemann syndrome is the most common genetic entity in overgrowth, with an approximate incidence of 1 in 10 00013 700births. Its broad clinical spectrum includes pre- and postnatal macrosomia, macroglossia, pinna abnormalities, abdominal wall defects, visceromegaly, and hyperinsulinemic hypoglycemia. This syndrome predisposes to childhood cancer and is caused by diverse genetic and/or epigenetic disorders that usually affect the regulation of genes imprinted on chromosome 11p15.5. The knowledge of (epi) genotype-phenotype correlations has prompted recommendations to propose different health care strategies, including tumor surveillance protocols based on molecular classification, aimed at standardizing clinical practice. The objective of this article is to describe the current status of the Beckwith-Wiedemann syndrome, a model of genomic imprinting.

Download full-text PDF

Source
http://dx.doi.org/10.5546/aap.2018.eng.368DOI Listing

Publication Analysis

Top Keywords

beckwith-wiedemann syndrome
12
model genomic
8
genomic imprinting
8
syndrome clinical
4
clinical etiopathogenic
4
etiopathogenic aspects
4
aspects model
4
imprinting entity
4
entity beckwith-wiedemann
4
syndrome common
4

Similar Publications

Imaging Findings and Management Strategies for Liver Masses in Children with Predisposition Disorders: A Review by the Pediatric LI-RADS Group.

Radiographics

January 2025

From the Department of Radiology, Mayo Clinic, 200 1st Ave SE, Rochester, MN 55905 (A.B.K.); Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.R.A.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (G.K., A.A.); Department of Radiology, Cincinnati Children's Hospital, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio (C.E.M., A.J.T.); Department of Radiology, Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill (E.R.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (G.R.S.); Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa (J.H.S.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (A.B.S.); and Department of Radiology, Children's Hospital Colorado, Aurora, Colo (E.R.T.).

Liver masses in children with underlying systemic disease or a predisposing syndrome can be benign or malignant, ranging from focal fat to hepatocellular carcinoma (HCC). Knowledge of the underlying condition, the pathophysiologic effect on the liver, and the development of liver disease and specific liver lesions allows radiologists to guide imaging with regard to modality and frequency and give recommendations for biopsy when appropriate. In some predisposition disorders, such as Beckwith Wiedemann spectrum, familial adenomatous polyposis syndrome, and tuberous sclerosis complex, established guidelines for imaging screening exist.

View Article and Find Full Text PDF

To assess the suitability of genome sequencing (GS) as the second step in the diagnostics of patients with the features of 11p15.5-associated imprinting disorders (ImpDis: Silver-Russell syndrome [SRS], Beckwith-Wiedemann syndrome [BWS]), we performed short-read GS in patients negatively tested for imprinting disturbances. Obtaining a genetic diagnosis for patients with the features of these syndromes is challenging due to the clinical and molecular heterogeneity and overlap, and many patients remain undiagnosed after the currently suggested stepwise diagnostic workup.

View Article and Find Full Text PDF

Purpose: Cancer predisposition syndromes are genetic disorders that significantly raise the risk of developing malignancies. Although the malignant manifestations of cancer predisposition syndromes are well-studied, recognizing their non-malignant features is crucial for early diagnosis, especially in children and adolescents.

Methods: A comprehensive literature search was conducted using the PubMed database, focusing on non-malignant manifestations of cancer predisposition syndromes in children and adolescents.

View Article and Find Full Text PDF

Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth.

Commun Biol

December 2024

Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.

Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice.

View Article and Find Full Text PDF

Placental mesenchymal dysplasia (PMD), rare vascular and connective tissue placental anomaly can be associated with fetal intrauterine growth restriction (IUGR), stillbirth, Beckwith-Wiedemann syndrome (BWS), some chromosomal abnormalities, or phenotypically and genetically normal fetuses [1]. We reviewed a PMD case from our institution characterized by a previously undescribed chromosomal abnormality along with an unreported histopathologic finding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!