The aims of this study were (i) to evaluate whether routine in-feed antimicrobial use in pigs or not resulted in differences in antimicrobial resistance (AMR) E. coli at different pig producing stages, and (ii) to determine whether resistant strains were presented in pig meat postslaughter. A total of 300 commensal E. coli isolates were obtained and examined for antibiograms, AMR genes, plasmid replicons, and molecular types. The isolates were from two farms either using (A) or not using in-feed antimicrobials (NA), sampled four times during the production cycle and once postslaughter. E. coli resistant to aminoglycosides containing aadA1, aadA2, and aadB and extended-spectrum beta-lactamase-producing (ESBLP) E. coli containing bla were significantly increased in the nursery and growing periods in farm A compared to farm NA. IncI1-Iγ and IncHI2 were common in the nursery period and were shown to transfer bla genes by conjugation. ST10 was the most common type only found in live pigs. ST604, ST877, ST1209, and ST2798 ESBLP were found only in live pigs, whereas ST72, ST302, and ST402 ESBLP were found in pig meat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154756 | PMC |
http://dx.doi.org/10.1089/mdr.2018.0154 | DOI Listing |
NIHR Open Res
September 2024
Centre for Trials Research, Cardiff University, Cardiff, Wales, CF14 4YS, UK.
Background: Our patient and public involvement activities were part of a project aiming to develop a master protocol and National Institute for Health and Care research application for the PROTECT trial aiming to assess the effectiveness, implementation, and efficiency of antimicrobial stewardship interventions, to safely reduce unnecessary antibiotic usage by excluding severe bacterial infection in acutely unwell patients.
Methods: Three public involvement sessions were held with representation from young people and parents, people from diverse backgrounds and people with experience of presenting to the emergency department with undifferentiated illness. The teleconference meetings lasted between 60-90 minutes, were recorded, notes were subsequently taken, and findings summarised.
RSC Adv
January 2025
University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold.
View Article and Find Full Text PDFInt J Microbiol
January 2025
Department of Biochemistry, Faculty of Science, Université de Dschang, Dschang, Cameroon.
Cases of antibiotic-resistant () infections are becoming increasingly frequent and represent a major threat to our ability to treat cancer patients. The emergence of antimicrobial resistance threatens the treatment of infections. In this study, the antimicrobial profiles, virulent genes, and the frequency of extended-spectrum beta-lactamase (ESBL) gene carriage in fecal isolates from cancer patients at the Laquintinie Hospital in Douala (Cameroon) were determined.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Background: Bacillus species produce antimicrobial lipopeptides (LPs) and methyl jasmonate (MeJA) induces resistance in harvested fruits against postharvest pathogens. However, there is limited evidence of the combined efficacy of Bacillus LPs and MeJA to suppress postharvest diseases.
Results: This study presents the combined effect of Bacillus LPs and MeJA to suppress P.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!